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1 . Let /(I) be a periodic function with period 2ir and be integrable in the sense
of Lebesgue over {- ir, v).

Let the Fourier series associated with the function f{t) be

/W = J '’o + 2 (an cos nt + bn sin nt).
n=i

We write

<)^(<) = H/{* + 0 4 /(* -
<) ~2S}

and

^(0 = f /(«) du.
J 0

2 , In 1948, Loren tz [2] discussed a new process of summation which assigns a
general limit Lim to certain bounded sequences x ^ {Xfj ]. This method is

analogous to the mean values which are used in the theory of almosc periodic
functions, furthermore, it is narrowly connected with limit ot Banach [1]. The
sequences which are summable by this method are called almost convergent
sequences.

In this paper we shall first define a new method of summation which will be
called ^'strong almost convergent” and also we shall find the sufficient conditions
which sum the Fourier series by this method.

Definition : An infinite series 2cLn with the sequence of partial sum Sn is said to

be strongly almost convergent of any positive order r to j., if

. :S
I

-‘S’ K = 0 (n), as 72 oc
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uniformly with respect to p.

The object of this paper is to prove the following.

Theorem : If p and q are conjugate indices, p>

(2-2) \nu)f du = 0{tAoQPl^lll)

and
nt 1

^
2

-3)
I i>{^) du = 0 (</log — ), as t 0

Then

S
1

- 5 !* = 0 (n), as n oc,

v=o

Uniformly with respect to k.

3 Proof of the Theorem ; With the usual standard simplifications, we write,

V -ir f(u\ du
vr J 0

^ 2 Sin ^ u

2 f )
Sin (« ^ k) u .

4- — r Cos [n + k) u f{u) du
J 0

{3-
1) = 1 1

/«(’> + /»<“> + + /n<‘>
}

.

,
k, log {n + k)

,

k^ log n
say, where Vi = 'rT^

~
~"n ’

It is plain that -> o, as n -> oc, uniformly with respect to k and there-

f n

^ 2 I

12 0 as fz oc.

Now integrating by parts and using the condition (2*3) we get

/n<^> = Sin {n + k) cot i \ FC^j) + o {])—

-J I

(fz + fc) cos (n^-A:) m cot^ - i Sin (rz+ A) u cosec**
*2

|

= 0(1) + o(l).
J
~ k (n + k)u
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0 (1) 4- 0 (« 4" A)
/:

1

du

Thus,

(3 '3)

' 0 log u

o(l), as n oc, unformly with respect to h.

-> oc,

f
” ,

I 1/1:0 I
=• 0 as n

uniformly with respect to k.

Further using the condition {2'3), we have

Vi

= f /(“) Sin (n + k) u cot i u
J r/j

du

uniformly w. r, k*

Therefore

(3-4)

uniformly w. r. t, k.

= 0 (1), as n oc,

f n .1/5

I
I

I
~ ^ as n oc.

Now we denote by Cn('r) the n-th Fourier sine coefficient of the odd function
X{t) which is equal toj(t) in (o;, t) and zero in (t^ tt), thus we have.

/nl®> = Got i u J“/(i) Sin (n -f k) t di
j-
du

TV u~ ~ i 'n cot J V2 (’^a) "i" ^ J ^
COsec'

^
^n+k (“)

Using Minkowski’s inequality, we write

f " f n a )

1 vlq I
® ^ ’’4 Jo '

^•'+* I

I
+

r’r
f n ? 1

*"
J r

?2
^ ”

1 rL *
^

j

Also by Hausdroff’s inequality, we have
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Hence

f *» s { c"' ,

^

'

v-o^ ' I
^

I J - ' i

= {/j/wr *}''=

o(l).
I
u^^P. log^/3 ~

I
.

I i i />'•’
I’

P= 0(1). {,;(<« log*
,^)}

+

+ 0(1). uyp iog’/5 I du.

= o{i).| v"^ 1°°''%;} +

+ ^>(>) [„
uP~'^log'l^

j
du.

= 0(1).
I
v’/3-log’/2

^7}

(3-5)
= o(n'^3), as n oc,

uniformly re;, r. /, A;.

Finally collection of (3*1), (3*2), (3*3), (3*4) and (3*5) gives

(
n

^

I
2^1 Syj^.jc

I

2
^

= o(n’/ff), as « oc,

uniformly w* r. t A.

Hence

n
2

I
‘S'v+Aj = o(fz), as n oc,

uniformly w. r, t, k.

This completes the proof of the theorem.
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1. Introduction : In the present paper some theorems involving some functions

and their transforms under any Fourier Kernel are obtained. The function k{x) is

said to be a Fourier Kernel if the following pair of reciprocal equations are simul-

taneously valid :

(1) g{^) =
J

k{x})f{y)dy

(2) /w = k{xji) g{y) dy

To ensure the validity of (I ) and (2), the set of conditions we use here consists of

convergence conditions oxi f{x) and k{x) together with a functional equation satisfi-

ed by the Mellin transform oi K{s) is said to be the Mellin transform of

k[x) if

= I
k{x)x^'^dx.

The functional equation satisfied by is ^*(3*) A'(l-j) = h [5]

The result given in Titchmarsh’s Fourier Integrals and Mitra s result [4]

follow as particular cases of the theorems of this paper.

The theorems have been formulated under mther stringent conditions. Some

of the conditions may be relaxed and analytic continuation method may be

applied.

2. If 0 (x) and (p [x) are two Fourier Kernels and if the integral

J*
^ (0 S (^0 exists and is equal to {x)y say, then ^q[x) is also

a Fourier Kernel [5]

We shall require the following two throrems [5] .

I. Let/-' /(j) belong to L{o, co) and let /(/ be continuous and of bounded

variation in the neighbourhood of the point jv — x. Let

F{r) = [°° f(x) dx, s = c it. Then

[
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I-/'"
2'tci T-^oo J c-i^

TT Let Fic + iu] belong to I( - » . « )
and let it be continuous and of bounded

variation in the neighbourhood ol the point u = t. Let

/w =
-T,rL.i.

rT
I ^
/M .y (? + 2 ^*m Urn

7"—> 00

In our theorems we shall assume that the conditions mentioned in these two

theorems hold.

3. We shall adopt the following notations :

pOO

^0 (*) =
J

^ {t) 0 {xl) dt and

(H)W = r -p
J 0

u .... al-A nnH t/jljti are Fourier Kernels continuous in each arbitrary finite

interval (oi X) and the integrals converge uniformly in (0, X), so that ^q{x) exist

and are continuous.

IfILl and K[s) are the Mellin transfoims of Q{x) and -/'(x) respectively then

it is easy to see that XW K{s) is the Mellin transform ofM 00 and ((h)^)(x) =

(<f>o0)(O and {So<ji){x) is also a Fourier Kernel.

We may remark here that if 0, <P> P are three Fourier Kernels then

[eo {<po^)){x) = CM) o^){x) -• {eoM)(x).

We may extend this result to n Fourier kernels. Let 0„ 0^, . . . • , 0n be n Fourier

kernels; Then (d^oe,o...o 0„)W is also a Fourier kernel. The Os may be

permuted among themselves, and all 6^s are continuous in each arbitrary finite

interval {o, X) and the integrals converge uniformly. And

{6i092^ • • •

dt
^

dtt^ * • •

'n-i

If we take

Sl{x) = \/xJv^ (*)> 1^2 (*) “ xJl’,^ W) •

On{x) = y/'x'Jv {x), then
u
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X

= /T f Jv^i) Jv.p‘^ • • • n-l) ^

J 0

X 7

*1 • • • *n-i

_ _ V (;«:'l a Forier Kernel introduced by Bhatnagar [1]

v,p theorems proved in the present paper, all the 0V need not involve

In the
. Qj. sine or cosine functions. Recently Fox f3j has

Bessel Functions theorems remain true if we replace some or all the

‘fb Fo^s K^S^^^ the convergence of the integrals IS secured and other

conditions mentioned
before hold.

We shall also adopt the notatiin :

fe (*) = f / ®

J 0

form of y(l) with regard to the Kernel Q[t).

4. We next prove a few theorems.

Theorem 1 i Let /(x) and ^(x) be two functions continuous and belonging to

L[o,(p). Then

This is known theorem.

Theomu 2 : Let /W »nd iW be two
i„‘“T“b “»ry*toite*tatorval

Then

J"
/„+Wde.»W * = |/«Wd„(‘)*

J 0

Before proving the theorem we prove thefollowing lemma.

Lemma : (x) =
^
-7/0 ( * <!>

[
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T'sloof : We know that

feo^M = M ® (4 ) ^ T

"/„" *(t)t -^W «'“>'"

r“
^Z" AT \ . , . rfu

=J. “U-J
-^^W r

"/>‘“>-^*(4)7

=(4/,(m •

Similarly we can show that

/..W"(|/,('7))*

Thus the lemma is proved.

Proof of the theorem :

I*

= •^0W £g{*)

= fJ 0 9

J 0

Corollary 1 : Let/(*) and jg(A;) be two continuous functions belonging to L{o,a>)

and di{x), 6ti(x), . . . , 6n{x) be n Fourier Kernels such that Or {
x), r = 1 , 2, . . . ,

is continuous in each arbitrary finite interval {o, X) and the integrals involving the

Kernels i.e., {BiOj^o . . . o dr) (*), converge uniformly. Then

f 3G2 ]



JdlOQ-i 0 . . . o9n {*) • . . odn {x) dx

= f g {x) dx, (r = I, 2, . . . ,n)

J 0

f{x) g{x) dx.

0

Proof : Since the O's can be permuted among themselves

(0jO02® • • • ^9n){^) ~ (9rO(0jO02O ... 0 dr-i 0 ^r+i® • • • ®0n))(*)"

Now [diOdiO . . . 0dr-i09r+i0 o9n){x) is a Fourier Kernel continuous in each

arbitraiy finite interval (o, X) (the integrals converging uniformly). Let us denote

this Kernel by fpix).

Therefore

{9io920 • • • o0n) (*) = (OrO'f') (^)-

Now

^9^ •
• • " Snix) g0^o • o9n{x) dx

J

OO

0

f
9^

{x) gQ^{x) dx

= f Ax) g{x) dx.

J 0

CoROLiART 2 ; Under the conditions of corollary 1,

f“ f9,0 • • o0nW% ° • • •

Jo ^

= J”
O 2° • •

• % 00^0 • o 0,(*) dx

= f fffr+i ° f»r+2 « • • o^r+u”
’ ' '

J 0

r
3r

j y (x) sM where f ~ 1,2, . • . ,
/i-]*

J c

Corollary 3 :

J 0

provided fit) and ff(i) are continuous and belong to Mo> ^)
9(x)>/(x) are con-

tinuous in p), JS") for all finite values of X and the integral for (0o^>)(*) cooverages

uniformly, and the integral exist.
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Proof : This can be proved by comparing the Mellin Transforms of both sides
We also get the following generalised result

:

^9:0920 o9r09r-n o o9,
(t) dt

dt

T’

under the conditions of the theorem.

In corollary 1, putting [diOQ.jp . . . oQy^) (x) — , . . . , we get theorem
2 of Mitra [4]. In corollary 2, putting r = 1,2, . . . ,

n~l, in succession we get the

corollary 1 of Mitra.

We note here that in all these theorems a change in the order of intearatinn
is permissible by De-la-Vallee Poussin’s Theorem [2].

5. Let

(i) ${x) and <}>{x) be continuous functions of x in (o, X) for all finite values of

X and let the integral involving B and viz- <I>q{x) converge uniformly,

(ti) Let /(a;), g{x) and h[x) be continuous and belong to £(o, od).

(in) j)g{x) be bounded and integrable in (t?, od).

(iz?) fg{x), g^{x) and Hq{x) be absolutely integrable in (o, od), where

Then

Hd{x) = f
h{t) ^0{xt)

J 0

dt.

Theorem 3

^o» aoo

Jo Jo
dx^ dx.^

^00 «00

~
I

I ^(h ) ^(^2) ^^2
0 J 0

Proof : Now

n oo

^

dx^dx^^

= dx^ fe{xix^) g^{x.;j dx.^

=
Jo

dxj^

/:ij: Ah) 6 [xrX^ti) 'dh
J

g{t.;} h) \dt2
j

dx^

=“
J*^g(*j)

dxi
J^

/(tj) dt^ g(t^) dt^
J

9{x,X2ti) ^{x^tu) dx2
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-
1
"

*. /" /('.)
/" sW «'.) *.

- 1"
V'* /'

J I **(^)

“J" *‘/I t il
*''

=/:/: /{^i ^2) ^(^2) ^^2

The changes in the order of integrations are permissible by the conditions of the

theorem-

Theorem 4 : Under the same conditions

/:/:

=/:/: h<j,^{t,)Ah Q sih) dh dh.

Proof . This can be proved in a similar manner.

Theorem 5 : Let

(f) Q[x) and ^{x) be continuous in (0, X) for all finite values ofX

(«) Lct/(*), continuous and belong to L(o,co).

{iii) ((jy 0 6) W be bounded and integrable in (0, od),

{iv) fg{x), — absolutely integrable in (0, co), where

X \ dt
G(x) =

Then

t J t
G[x) = g{t)

n»
, ^ ^ \ dx^ dx2

= f f ^(*1) /(^i ^3)
dt^.

Jo Jo

[
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Proof :

~L W’‘> * /,
{/./<'.)»(**',) j(«

”/. W'‘> *' //<*>
‘"'/I swl7£«(w.) '‘(Jp)fii

\ 2*'2 /

“
/. %o« * /' ^“> * /.' i )

">

-
/.

J'l'il *1 ^W 7^*1 M (^ )
*1

00

= f A(«j)/(V2)
J 0
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Abstract

In this paper Convolution of two functions have been expressed as an integral of transforms
of these functions with respect to a pair of inverse transforms. A result of Mellin transform in

terms of fractional integral is illustrated by examples.

Introduction

1 . Convolution of two functions /(i) and^{0 is defined by Erde'lyi [4, page 8]

(
1

-

1
) /• 5 = > 0 .

for the interval {oj)

Ruel. V. Churchill [3, page 274J has defined it over the interval tt, ir). Con-
volution or Faltung of the functions / and g over the interval ( -co, co

)
is expressed

as Fourier Transforms of functions /and g [5, page 24] as

(I'2) / g = f f{x) g{u-x) dx= f F{l) G{i) dt

J -00 J -00

Similar results for intervals (o^x) and [x, co) are known [5, page 31] for Laplace

transforms.

Convolution of two functions over different intervals have been expressed in

terms of integrals involving transforms of the functions / and g.

The object of this paper is to express the Convolution of two functions J
and g as an integral involving transforms of these functions. This will be done by

establishing a theorem. Some particular cases will give known results while others

are believed to be new. The theorem is illustrated by two examples. The
approach is formal.

2. Theorem If

(t) and k2 (x) are kernels of a transform and its inverse, having C and
Co as the limits of integration so that

(2'1) F{y
)
~ Kiifix) ;y} = /(*) k^ixy) dx.

(2-2) f[x) = K.,{F{y);x) = F(y
)
k, (xy) dy.

(“) / (0 i (x-l) is integrable over the interval Cj

(Hi) the integral

[
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(2-4) G(j) = ly) and r[x,y) = f[t) k.^ {(at - i)j,) dt

Proof : Because of (z) we can write

(2-5) gix -t) = ;y} t^((x - t)y} dy

Using (2*5) in L. H. S. of (2*3) we get

/(O -t) dl= ff(l)
[

K, ;y} k, {{X - t)y} dy Vt.

Changing the order of integration which is permissible under the conditions of the
theorem we have

f /(O t) dt = K, {g{^) ; j}
1^

/(f) k, {[x - t) y} dt
Jr/j.

Using (2*4) we arrive at (2*3),

3. Particular Causes : In cases where Ag {{-v - can be broken up into factors

of the type Aig (a;j) Aj the function r[x^y) is further simplified. This can be
seen in the cases of Fourier transform, Laplace transform and Mellin Inverse
transform. Other cases of Mellin transform, Fourier Cosine, Fourier Sine are
believed to be new*

(1) Fourier Transform. Let [x] == [x) = r = Cg = (-oo, co
)

then

A^iy) of (2‘4) becomes e'^^y F[y) and (2*3) reduces to the known result [5,

page 24].

/(O 1
) r

“
G(j;) F{y)

J -QO

dy.

Interchanging k^{x) and k^ (a) we have

/

OQ

/ (jJ') i[y) dy .

“00

(if) Laplace Transform. Let k,[x) = h[p) ^ C, is [o, «) and C, is {c -i «
to c + f CO

)
then r{x,y) = e®!/ f^y'j and (2-3) gives known result [5, page 31]. Inter-

changing {x), Cj and (a), in (2 3) we have
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1 fC+ too

oil G(x-i)F(0d^= e-<^y dy.
ITT I ] ^,^00 J o

(iiTj Mellin Inverse. Let {sx) = L, (sx) = Cj is (c - i co to ^ + i oo),

Csis (o to co), then r{x,y) ^ {y) and (2*3) assumes a known form [6, page 521.

(iy) Meliin Transform. Let (a'5) =: (^a:) = x'^l2Tri

Now
^ 1 rc+foo

(3-1)
- t) = 2;:^. j ^

G{y) {x ~ tyy dy

and this exists for / < *

Modyfying accordingly

rix,y) = r(l -y) /(/). o<y<\

where / denotes the operator of Reimann-Liouville fractional integral

operator of order (I -ji) orxJ[f\.

Ultimately (2‘3) becomes

(3-2) r /W <g(^ -i)dt^ U(>) r{l -y) 4'‘-2/>/W dy.

Jo ^ TT z J

0 <y <\
Above result can be easily verified by laking

j{l) = and = e~^y Re v > o>

(n) Fourier Cosine Transform. Let (x) = k^ix) ^ J

~

J ) ^dy)

derote the Fourier Cosine transforms of/ (/) and and let

P'sAiy) = /W Sin((y) dt

J 0

and

d^cAl) = r /(() Cosily) dt

J 0

then

r(r, j) = J~ Cos'(*^) Fo,^ (^) Sin [xy] Fs,*(jv)

Thus theorem becomes

(3-3) = J i- j^
Gc iy) FcAfl dy

+ Ji ^oiy) FsAi)

[ 369 ]



{vi) Similar result for Fourier Sine transform will be

Ga(y) Fc,xiy) Sin (xji) dj>

~ J~j 0

Gos(*7) dy.

Above results can be verified by taking functions

Jit) = e-“t, g{t) = e-fii, a > ^ > 0.

4. Example 1 : Let/(t) = Cos [at), |(t) = e-jS*

Using the result [2, page 189 ^^ol. II].

(4*1) 7a,<‘-2/) Cos iat) =— (1 ; 2 -jy ; iax) + (1 ; 2 - j ;
- iax) 1

l-y>o. -*

Using [1, page 312, Vol. I]

Mellin transform of e'f^^ is

H'S) C (.,) =

Substituting these values in (3*2) we have

r Cos (at) 1 f
_!(jj (l -^)

Jo 2TriJ g.io, /32/2 l(2-j)

^ (1 j
2 - j" ;

tax)
-fi jFj (1 ; 2 -j ;

- jua;)

Evaluating the L. H. S. and simplifying the R. H. S. we get

1
p+«c» r {>) r . , _ . . 1

* J c-i«, (1 ~y) i 2 - j» ; tax) -h jF, (I
;
2 ~ y ;

- tax) x-V g'V dy2iri

<:>><• 1

U| < |a

Replacing ^ by * by X, we have

1 fc+»«> r( v) r . I
2 ir i J (H^yL ^ + 1^1 (‘ i

2 - j; - iaK)
Jx'2/ z'^ dy

~
x" (flS ^ ^

2
^ I

Gos (flA) H- a Sin (aA) - z o < Rey < 1

U I < U 1
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This result can be verified by evaluating the integral with the help of the residue
theorem, the contour being a line parallel to imaginary axis, cutting the real axis
at c such that o < c < I, encircling the poles viz. (o, - 1, - 2

)

Example 2 : Let/{t) = = Sin /3/, then using [2, page 187J.

{4’3) 4(’-2/)/==
I

1 ;
2 -

;
a a;

I
1 > 0

also using [1, page 317] Mellin transform of^(t), becomes

{4'4) G{y) = Sin
^

- 1 < < 1

Substituting these values in (3*2) and simplifying we have

1 T{y)

B («““ - Cos Bx) - a Sin Bx=
x {a^TW) o<Rey<\,

1 ^ | < |
«

Replacing fi by «, x by A, we have

1

J 0-

c+.»

(1^ {
1 ; 2 « a

I
A-1/ ry

z - Cos A,^) - a Sin Xz

X (^“ f
0 < Rey <1, 1

C
I < 1

«

This example can also be verified as in Ex. 1.
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Abstract

Tn obtaining solutions of the field equations of general relativity the energy-
momentum tensor employed is either that of material distribution or of electro*
magnetic distribution. In this paper we examine whether the superposition of
the two fields is consistent within the frame-work of general relativity. It has
been shown that such a superposition is possible in case when the material field

consists of perfect fluid distribution and the space-time is spherically symmetric.
In the special case of the distribution of discrete particles the density and the
electromagnetic energy have been expressed in terms of the metric potentials.

Introduction

The form of the material energy tensor in general relativity in case of perfect
fluid distribution is given by

Tf == (e + />) uj + 8/ p, Ui = -1, (M)

where are respectively the matter density, pressure and the unit flow

vector. On one hand when p = 0 it leads to a distribution of discrete particles

and on the other, when T = Tf = 0 it gives the photon fluid distribution corres-

ponding to the maximum pressure- density ratio, j&/e - Other cases of
perfect fluid distributions having a given equation of state lie between these two
extreme cases. The form of the material- energy tensor in case of viscous fluids

has recently been given by Lichnerowicz (1955). Also we know that the form of
the energy tensor for the electromagnetic distribution is given by

= - Fja + i
Sji Fab {1-2)

where Fa is the skew-symmetric electromagnetic field tensor.

The various solutions in general relativity corresponding to non-empty fields

have been obtained by using either of these field equations. But the form of the

energy tensor when the matter and the electromagnetic field exist concurrently
has not been specified in general relativity. In solving a particular problem of
this nature a linear superposition of the two fields Tj^ and has i ecently been
considered by Shah and Vaidya (1967). In this paper we examine a more gereral
case of superposition of the perfect fluid distribution and the electromagnetic field

within the frame-wolk of general relativity, for this purpose we take the total
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energy tensor as the linear sum of the two tensors given in (M) and (1*2). The
'case of discrete particle distribution has also been examined. It is shown in this

paper that the field equations thus obtained are consistent. The pressure and

density are modified by the presence of the electromagnetic field. Nordstrom

solution (2) is given as a particular case as is expected.

Metric and field equations

We consider the spherically symmetric space-time given by

ds^ ==: dfi 4* dr + {d8^ + sin- B d (2T)

where are functions of r and t. The relativistic field equations are

R/ - i S/ - ^ Stt Tj\ (2‘2fl)

where we take

T/ = + Ej\ {2^2b)

For the metric (2T) the field equations (2*2^) reduce to

^ir
[

(e + />) 1 ~ ^
~ ^ )*

(2*3^)

-Stt [
(e + ^) Uo-^rp+E^ ]

= - Stt
[ (€+/?) U^+p^E^ ]

-8>r
[ (8 + /,)

ui
«.i + /)+£t ] = i +e-^

,

(2-38)
f- \r /

-8u [[e+p) iP + ]
eP = Stt «“

[
(e-)-/,) u,-^Et ]

= -^ {2-3d)

Stt F4 = 8r e'P
[ ^ i?,3 cosec^ 6 - «“ ]

= - Stt (8+/,) u’ Us, {2-3e)

^ - 8z (e-\- p) u' Us, (2-3/)

= - 8ff (e + /) )
«^ Us, (2

-3^)

^ - Stt (s -f p) (2*3/l)

= - Stt (e 4 p) 1/4 ,
(2*3t)

£1 = 87r 8-^ [-12 _ ^-a
j

8.
[
8-/3 Fs, F3 ,

- ^^34 ]

Stt El = - [r ^ Fa; F« + ^23 cosec20 ]

8^ £3 =
[

8-^ £3^ + :^2
I g

where

a 9r 9i:
1=

-07 ’ = 07
’

From equations (2‘3 a, ..., t) wt have

£3 . El = {e+p) («^ «3 - «® %)

[
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C
«“ {Fs,? ]

cosec^ e- )[ {F,,)^ - r- {F,,y.
], (2'4)

where

(„1)2 = (, + PY^ e^^k,

1 [ (£|)2 - {Eif coscc^e 1

^ m-El'

{u,y = (s 4- PY^ ,

(«4)^ = (a + PY^ k,

-p^ePk-k Ei - Q-f-.u»>
* “ i + {FlY cosec^ 6] - r* +

(2'5a)

(2
'

54
)

{2-5^)

(2'5<0

(2-6a)

(
2 -

64
)

{E 1 Elf ^(EiE^.y Sin % (2-7a)

(EJJJJ)’- r‘
(2-74)

Stt [£1 ] = •- 4̂ 4
“4^4 \

4 J
+ <-»

Y' Y“‘- H
«, - «i2

4
"'nj. *

2 J r-*
(2 Ic)

CO -Et + e^k + (.SJX rn\-
{Elf

e-fi.— (“1 4 {2‘ld)

p2
8rr r=^ A = ± (8rr £1 _ «-j8

)
r

(2-7«)

Thus we have five algebraic equations, viz. {2-la, b, c, d, e) in eight unknown s viz.

Fij, a, p. Apart from these algebraic conditions Fi/s have to satisfy Einstein-
Maxwell differential equations

and

(2-8)

FH
)w7

(2'9)

where a suffix preceded by a comma
( , ) stands for partial differentiation and

that by a semi-colan
( ; )

indicates covariant differentiation.

The number of algebraic equations is less than the number of unknowns.
In the next section we shall investigate the consequences of imposing restrictions
on the unknowns.
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Radial flow of Matter

We assume that the flow of matter takes place along the radial direction

only, o q n^ = 0.

Equations (M), (2-36, e, /. g, h, i) and (2-4) reduce to

«’ -{- W* = - 1, {3'1)

- Sir (/) + El) = - Sir (p + El)

{-t + ¥ - (-5?-

i7,3 cosec=*0 - «“ F,4 ^24 = 0, (3 -2*)

(3 •2c)

{3-2rf)

(3-2c)

(3-2/)

1

C-^F2i/i’3i-C-“/?'24^Sl =0.

F.^^ F41 + ^®i^43 cosec^e = 0,

c-/3^'siF44 + %F,2 0 ,

* r*"

c-i8 (F, 3
)“ - e-“ (^34)“ - [ rP [F^,)'^ - (^24)“ ] sin^0 = 0. (3-2^)

From (3-2(f) and (3-2|') we get

{F^sf = "

= - e/3-“ (F34)® sin“0, \- ' --

Since the first set of equations (3-2A) gives imaginary value, forFsiandF,

take the second set of (3’2A), i,e.

1
Or

(F43)^ = ci3-a

{P12? = (^24)=

{3-2A)

we

H-a

F,2 = ± C “ ^24.

(3-3a)

(3-3i)B-a

F,3 = dr « ^ F34-

In view of (3-3a, A) the equations (3-2A), (3-2c), (3‘2c) and (3-2/) re uce to

(^2S Fsj) (.Qsec^g - (1^14^24)'*
^ ^

’*
^ {3-4A)

(1^28 F<2t)^ r^ - (Fj4 Fsi)^ = 0,

and (3‘2d) reduces to an identity.

Now equations (3-4n, b) lead to the following cases

:

Case (ia) Fj^, F^si F.^^f fs4

In this case (3-3a) and (3 -3 A) give

F34 = dz F.2i sin 6,
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PiS = ± t-e - Fj 4 sin 0,

and further we get

(3-5i)

£1 =

El = £” = - r«-/3 (Fi,)^

F| = r“-® (Fi4)2 t {/^

0

Fi= ±|. ^ «
T

*2
24) J

(3-6)

From {3-5a, 3), (3‘6), (2'3<2, c, <f), (3’1) and (3'2a) we get

-B^p- -B^r<^-I3 + _ ^nj
^3.7^^

8^ . = 3(8^) r“-/3 (Fu?+ ~ -

)
+

+ ;®r“i
, “i^-“i/3i , «n 2

2r' 4 (3-7i)

(“')’ — ‘‘^[- 8'#

(

;.+,-) - f.+8T '“{p(fj,)’-«-%„)>|J, (37.)

M’ '•“
t .-»

( f' - y+ i + 8,{2 (P,). + .-^
j_ p.„,

{F._if=^e-P - e“-2^ - e“ |2(87r) c-“-^ (Fj^)^ - r“

.-n -
“f +-P ) +i }

{
-
-i

- 2 w (^„)=

+ *-<» ('2
*'+ T -^ *11

2'+;yi

7 (
8 "’)

[
K + ®i) ± 2 «

"*'

(3-8)

Thus the algebraic gravitational field equations enable us to express e,p, u\
and 7^24 terms of « and |0. Now F will be determined from Maxwell’s
equations in terms of « ^ and when suitable conditions of state are imposed on
e and «, j8 can be determined from (3- 7a, b)

When in (3 3a, b) and (3*5a) positive sign is taken, Maxwell’s equations (2*8)
reduce to i \ ;

B-a

« “ iPui,s~Pu,-^ + F^S.I == 0, (3-9a)
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/?-a

(« '
^S4).4 + Fsi,i - sin 0 = 0,

(^ ^
^3d)>4 4* -^84,1 ^^U,B = Oj

“*-^
24,3 + -^34,2 + -^23,4 = 0

,

From (3'9rf) and (3‘9c) we get

^14,3 - Fii,z sin 0 = 0,

which leads to the solution

^14 = Puli'll- log (cot 0 + cosec e) }, r, t ].

Similarly other solutions arising out of different combinations of signs
and (3-5fl) can be obtained.

Case {ib) Distribution of Discrete Particles.

In the case of discrete particle distribution we have

p = 0,

and (3‘7a), (3'8) reduce to

8ir + e-a (^+ '

{F,,Y- =
[

- .<x. 2/3 { 8. (7^,,)= + 1 (1-r

+ {8^ (Fk)« + ~ (i-r/3)

}

From (3'10) and (3*11) we conclude that and F24 are functions of r
MaxwelPs equations will become

{r^ e
2

' sin ^ ^ 2 77,^^ ^os 5 == 0,

S'd

± ^
-^24) .4 + ^‘M.n — 0,

-a-

8

(r* e 2 ^14),! sin 0 + F^i cos 0 0.

Equations (3‘12fl) and (3'l2c) will hold at all points only when

^-/3
(r* e FuU = 0,

(3-9i)

(3-9c)

(3-9d)

in (3'3j, 6)

J), (3-10)

(3-11)

and t. So

(3- 12a)

(3-12A)

(3-12r)

and

Fo^ = 0.
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But we started with the assumption that none of the Fi.,’* is zero.

Hence discrete particle distribution does not permit all the Fi/& to be non-zero.

Case {iia)
~

Then

El = -Et = - l 4- (FflJ'-* cosec^’^],

El = = 0,

Fi = ± + (Fs,)^ cosec'^0].

(3-13)

Equations (3-1), (3-2fl), (2-3a, c, d) and (3-13) will give

-&^P = ^ [-2 i J ^ \ 2r
^

4 27 ’

Stt e .(3-l4i)

+ 72+ r )
{F84)^ cosec“i9}

J(3-14(;)

(u4)’‘ = *“
C+ /*+ + 4 ^ ^a) {{^24)^4 (F3.i)“ cosec^fl}]

(344(;)

{(F24)H{Fm)" cosec“<?} = «“
|7a+*-^(~

-
7)+”’'/^} {7

-a.p

+7’

)
+ /*

I
(" 1+^ 1) i ^ ^ J- (3'15)

and equations (2-8) will imply

Fsi.s -Esi,2 = 0, ’

j
8~g

Fai,i ± (« ^ P2i),i =0. h ,(3-16)

3“a

Fai,! ± (e ^ Fs^),! — 0. ,

Case [Ub) For discrete particle distribution, i.e., p ~ 0 (3' 14fl) is specified by

a = p =f{r-\- t) + g{r- t), {347)

and (344i, c, d) and (3*15) will turn out to be

8ir £ = 3 (1 - r/'O),

'-£^[4. +^'7+ 'f }]

(348<!)

(348A)
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(3- 18c){u^r-
=
rZ-gfi
8ir s

L\ ,

ef^3i{\-e-f-9)-

rV 4i 1 r3

-

{ [Fiif -1 co&qcH) A J t

where

d[r- i) *

(3-19)

Maxweirs equations (3-16) lead to

F04 = J^24 { ± 0 » ^ }j

^34= J^34 { (r±^)j ^5 ^ ),

Further if we take = 0 {3*16) will give

F^i ^ -^24 { (^± 0 j ^ }

If 7^04 ^ F24 { (r-f'<), 6* ) then ^ = 0 and right hand side of (3*1 87, r) will

become infinite. So we take

F24 = 7^24 { (^ ““
^)? ^ }>

which implies/' = 0, i.e.,/= constant which can be taken to be zero without

loss of generality. And (3'18<2, 7, c) and (3*19) are

^ (1 - «'®)>

{u^Y

{u^Y

rsf 1

Otts L

^'1

Sire

8^ [F,,Y = W =
(1 - e’-^f

In this case the current vector calculated from (2*9) turns out to be zero.

G..se {iiia) Spherically Symmetric Electromagnetic Distribution.

In case [i) and (ti) the electromagnetic field has not been assumed to be
necessarily spherically symmetric although the material distribution is spherically

symmetric. If we impose conditions of spherical symmetry onFy, from the

considerations of groups of motions we find that only two of Fi/^ -

are none-zero. Then

^12 — ^18 ~ 0,
^

= -ES = -£| == £* = H e-^-P (Fh)H cosec^e ]=,

Ei=0.
{3-20)
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Equations (3-1), (3-2fl), (2-3a, c, d) and (3-20) give

_ 8^/, = - 8vE; + §" - "f) + +

8v . = 3(8^) El + ? (1-r^) ^

— —4
2 ) (3-21a)

+ (®'27 + -1
“ - “ii0i ,

"•

+

(ai )3 = -8v /) - Stt £J-
- -“ + + p

(u4)2 = /> + Sir £i H- ^3 +

{3-2U)

(3-2 U)

(3-2W)

4(8rr)Ei = -
I

“J' ^ [', ^ + I

-
4

{ f («r/^.)
(
^ - 4.)+

- 2 ~ - e-'^IS + 24^ + 24 -
1) ] }

{3-22)

where

(3-23)

^ = ,-.
(
&+ »( -

'f )
+ (-Sp-+ ^ - ^»)

Equations {2-8) imply

F,^ = Fu{r, t),

F,j,^ — 7^28 (05 j>).

Denoting the right hand side of (3-22) by B (r, t), we obtain in view of (3-20)

4 (8x) {F^Y = [2B - 4 (Sir) r'^'^ F,S^ ] sin“0, (3-24)

which by virtue of (3*23) implies

r* [2 5 - 4 (S^r)
(
77

j
^)2 ] ^ (constant),

or

4 (8r) (E'h)^ = ({2B-% .
(3-25)

In particular if we assume (3*17) to hold in this case^ then (3*2 h/, r, ^f)

and (3*22) will become

8ff /) = 8n Ei = - ^3 (1 - e-f-0) (/'
(3-26fl)
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= 3(8^)/- + |o (I (3-26i)

^„.yi = «-/-£'[ - ^e-f-!’ if ?)'“ + e-f-s , (3-26c)

^„i)2 ^ «''^‘®[ ~ if's
(3-26^)

which for /. > 0. a > 0, . > Sp, {u^Y > 0 and («*)= > 0 imply

ef+9 > 0, e-f-0 [f'g )’'==> ^ (1 - e-f-9)/^ > [fg )V2 (3 27)

Case {iiib) In the case of discrete particle distribution (3-21 a, b, c, d) and (3-22)

lead to

if

(3-28«)

(3-28c)

(3-28<i}

9

8^ 6 = 2 (Sir) El + -2 (1 - (“i- /5 i)

{„h‘^ =— !

t" J 8ir 8
[-8x8i-i+.-/3 (?+,-)]

r„.. + i,- + ,l)=
(3-28,

L

and

(3
-30

)

where

Sir {F^sY = h sin-5,

J. . ,{2 (%+¥ -“#)+'
'l

or , ,

Sir [F,^Y = (-2* -h
^

Further in the absence of matter we have

e = p = 0,

f
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and equations (2*3^, i, d) are

Equations (3*32) will lead to the solution

and

4’r[(7^u)*+— cosec25]=
*

If we take here -= 0, Nordstrom solution is obtained as a particular case,
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1, In recent years differential systems involving rather arbitrary retarded

arguments have been studied more and more intensively. This is due to the

importance of such systems in various branches of technology. Recently/, Driver

[1, 2], Lakshmikantham and Leila [4] and others have dealt with the neutral func-

tional differential systems, and have obtained several remarkable results. How-

ever, all the theory'developed concerns itself with the stability and boundedness

problems of neutral functional differentia] systems by considering one-sided

estimates of solutions. In many cases of practical applications, it is natural

to expect that, an estimation of the lower bound for the rale at which

the solutions approach the origin or the invariant set, would yield useful

refinements of stability notions. In the present paper upper and lower bounds

are determined for the rate of growth or decay of solutions of the neutral

func ional differential systems which arise in one approach in the two-

body problem of classical electrodynamics. These bounds are obtained by using

comparison principle and the extension of Lyapunov’s method. We introduce the

concepts of relative -strict-stability and relative-strict-boundedness of the neutral

functional differential systems and the two sided estimates obtained ensure that

the relative motion remains in tube-like domains

2. Consider the two systems of neutral functional differential equations

(2-1) x\t) - J {t, a(/), x{g [t,x [t])), ^ > ^0

with x{t) = ^ (t) on [a, y,

(2-2) y[i) a= h[t,y {t),y (g {t,y [l))), W))). ‘

with j(<) = <1/ [l) on [
a, Iq ],

where * = . . . , Xn) , y ^ • • • >
• • >/«) 5

A = Aa, . . . , hn) and g = (gi, g2 ,
• • • > Sm)- < io, “

“ < is < t,j =: 1,2, ... ,m, for all t > tg and x'(gj {t,x{t))) and/ £^(^^(0)))

stands for ^-and ^ evaluated at^^ [t,x[t)) and gj respectively. The word
dt at

‘Neutral’ is used because the equations could be considered both for retarded
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arguments as well as

retarded arguments will

pendent variable.

for advanced arguments. However, in these systems the

depend upon the dependent variables as well as the inde-

Suppose f, h and g are continuous functions of their arguments in their

appropriate domains that is/is continuous in t, x' {g{t,^{t))) in the

domain It = (an open connected set) in an (l + n+2nm)

dimensional Euclidean space. A function x[t) is said to be a solution of (2-1) if it

satisfies the following conditions :

(i) x{g{t, x{l)))) e D-G
for each compact set (3 C jD> ^ ^

(ii) x{t) = <!> (t), « < t < to)

(Hi) x'U] = x[t), x[g(t, ^(/))), x' {g{t,x{t))))

for almost all t « (^o> py

Similarly we can define as the solution of (2*2).

The existence and uniqueness of Neutral Functional-Differential Equations

have been discussed by many authors. Driver [1, 2] has given references of

many results obtained by various authors in this direction.

Let and be any two solutions of (2T) and (2*2) respectively. Let

(r [x,y\ = (I
a: -j I!

denote the distance between two points at and jp. Our interest

lies in the following definitions. The systems (2T) and (2*2) are said to be

{S-^ relativdy—strictly-ii^ui-stcbley if for each f] > o, /q ^ o, it is possible to find

positive functions dj = tj), == d^ (/©) ^i)
^ ^2 (^oj ^1) "^bich are

continuous in for each ^ i, ^2 < ^2 ^ such that

£3 < or jW]

whenever

{t), V'W t ^ to;

(53) relatively- sirictly-equi-norm- bounded/if for C 2ich 0^1
'> 0^X0 '^ ^9 possible to

find for every satisfying 0 < positive functions "
1)5

& = P2 (^oj ®i)> which are continuous in to for each that

^^2 < 0-
[ y{^) ] < P 19 i> lo9

whenever

<^2 < [9^ MO ] ^ %> « < < lo-

3. Let V{tiX,y) > 0 be defined and continuous function of its aigument in

its appropriate domain, and satisfies a Lipschitz condition in x and y for each U

Define, for small x > 0
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f3'l) V*{i,x,y) - lira sup [ F (t + X, *(t) + X x{g{t,x (<))), x'{g[t,x{i))))^

^ X-^o+

y{t) + Xh{l,y (t),y {g{t,y il))),y'(g(t,y[l)))))

— F(t,x(i),y(i))].

We formulate the following lemma which is useful for our subsequent

discussion.

T f'rvfA- Let the function V'*[t,x,y) of (3-1) satisfy the inequality

(3-2)
F{t,x,y)) < V*{t,x,y) < W^it, V{t,x,y))

where Wx{ty) and Wfty) are continuous real valued functions /or < « 7 = [ o, co), r > e.

Let r{t) and P [t) be the maximal and minimal solutions of the scalar differential equations

(3-3) r' = lVft,r}, r(to) = r,,

(34) P' = W^2(f,P). P{'o) == Po,

respectively for all t > tg. If x{t) andy{t) be any two solutions of (2i) and (2-2) with

their initialfunctions <p {t) and ip {t) respectively on
[
a, to ]

such that

Pfl ^{^o> (0) ^ ro> a ^ t ^ Iq,

then

(3-5) P (0 « V{tyx{t),y(t)) < r{t), t > ta-

Peoof. We shall prove the right half of the inequality (3-5), similar reasoning

can be used for the left half. Define m(t) = V[t^x{t) y[t)). then m[tf) < r^. Further

for small X > o,

m(t + A) - m(t) < C [ II
x{t + A) - x(t) - Xf{t, x{t), x{g{t, x{l))), x'{g{t, x(t))))

||

+ \]y {t + A) -y [t) - \h{t,y[tfy{g{t,y{t))),y{g{ty{t))))
J| ]

+ F(<+A, x{t) + Xfihx {t), x(g{t, x(t})), x' (g(t, x(e}}}),

yiOi-xh {t,y(t),y(gll,y(i})),y'{g(i,y(t)}))) - FlL x(/),y(i))

where C > o is a Lipschitz constant. This together with (3‘I) and (3‘2) implies

the inequality

Urn sup
1 ^ j ^

X ’->0^ X

The standard argument used in [ 2 ]
can now be followed to establish the desired

right-half of the result in (3*5),

Corresponding to the definition (Sj), we can formulate the definition (Sf)
wi:h respect to (3*3) and (3-4)

(S’!*) For each Vj > n, ^ o, there exist positive functions Sj = Sxito, Vj),

^2=82 (<o, Vx) and Vs^Vsitg, Vj) which are continuous in /<, for each Vj, v^<S2^£j<V,
such that

[
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Vn < P (t) < r(t) < Vu l> Iq

whenever

^2 ^ pQ ^ ^

Definition (S2*] may be formulated similarly.

4 . We list below certain assumptions which will be used subsequently.

(4-1) < "( "• Jj).

where a{r), b{r) are continuous, strictly increasing functions for r > 0 with

a{o) = b(e) = 0,

(4*2) i(r) —>03 as f CO.

The following theorems provide suflBcient conditions for relative-stricU

stability and relative-strict-boundedness of the systems (2T) and
(2

*2 ).

Theorem 1 . Let the assumptiom of the lemma hold, together with
(4T). Then[Sf)

implies that the systems {2‘1) and (2‘2) are relatively- strictly- equi- stable.

Proof. Let e^> 0 and /(, > 0 be given. Since holds, given > 0,

tf, > 0, there exist positive functions Sj = Sj (^o, 82 = 82 (<o> ’Ji) and

% = ’’2 (^0. \)> ’J2 < 82 < 8j < Vi ,

such that

(
4 -3

)
V2 < P[t) < r{l) < Vi , t > to,

whenever

(
4-4

)
82 < Po < ^'o < Si.

Choose an > 0 such that 0(8,) < and < e^. Let x(t) and _>>(/) be any

two solutions of
(
2 *

1
)
and

(
2 '2

)
respectively, such that,

(
4 *5

) Po < V{lo, '/'(«)) < ^'o. for « ^ /q.

Then it follows from the lemma that

(
4 -6

)
p(t} ^ V (l,x{l),y{t)) < r{t), t > to-

Further
(
4 ‘

1 ), (
4* 5

)
and

(
4 ‘4), show that there exist two positive functions

di <fj (/(,, Si), d.2 — d^ [to, 8]) such that

W. W ] ^ ^1 implies 82 < F(to, <b (0> 'P (0) ^ 81

for a < t < /g, and vice versa. Thus whenever d.^ <'>• [ P {t), P {t)
\ ^ <fi, it follows

from the assumptions of the lemma that
(
4 - 6

)
is true. Now we claim that

*2<'^[ x{t),y (/)
]<f„ for t > to, provided d^ ^ <r

[ p {t), p (i) ] ; d^, for a < / < to-

Suppose on the contrary, there exist solutions A:(t) and j)(t) of (2-1) and (2‘2)

respectively, satisfying d^ ^ or [p (t), p (t) ] ^ such that for some t = tj > t^,
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o-[ A(/)),>(ij) ]
= «] or ir [ A (tj), j(/i) ]

=e,2. In the first instance, using the inequa-

lities in (4’1), (,4 6) and (4‘3) we arrive at the contradiction

^{®i) ^ ^(^1)) < i(si).

On the other hand, if o- [ j{ti) ]
= e^, we arrive to a similar contradiction

^ ^{^i> *(^1)1 j(h)) ^ ^ (^1) > ^^(''2)5

because of the inequalities in (4‘1), (4-6) and (4*3). Which proves that the condi-

tion (^1*) inaplies {6\).

Theorem 2. Let the assumptions of the lemma hold, together with (4T) and

^

(4-2).

Then {So*) implies that the systems (2‘1) and (2*2) are relatioely-strictly-equi-norm-

bounded.

Proof. Let > 0 and /q > 0 be given. Choose <13 such that 0 < 0*3 < Oj. Let

m and ifU) be such that 0-3 < <r [<t> [t],
<l>

[t) ] <, for cc^K^tg. Then
' ' A A A A

because of (4 1 )
it is possible to find positive numbers Oj = (a^) and = 03 (“2)

such that

(4*7) ®2 ^(^o> ^(0) ^ “ij ® ^ < ^0*
'

' ^ AAA.
Let (So*) holds. Then given > 0

, > 0
,
there exist, for every “3, 0 < “3 <

A AA A

two positive functions l^ = /i (to, “i)j k — h (^o> “i> “s)' ^2 < ^i> ^2 < “2

(4‘8) h< P (0 ^ 'W <

whenever
A A

(4.9) “3 ^ Po<ro< “i*

Since 4 (f) —> c6 as f —> cc
,

it is possible to find positive functions

1^2 = i33 (to, “i, 02)> such that

^1 < KPi), k > *82 < “2> P2 < Pv

Now supposing the contrary and proceeding as in the proof of Theorem 1, one can

prove that (S^ is true.

5. Corresponding to the systems (2*1) and (2*2), we consider the systems

(5’1) x'(t) = /(h*(t), x{g{t,x{t))), x'{g{t, xit))))

+ Fit, x{t), x{g{t,x{i))), x'(g{t, x{t))))

with x{t) ^ ^ (0 on [of, toli

(
5 *

2
)

y{t) = h{t,y(t),y{g{t,y{t))),y {g{t,y{t))))

+ H{t,y{i)y{g{h yii))),y isii> MO)))

with_)'(t) = <l> (0 on [
<r, to ]>

respectively, where F and H are perturbed functions and obtain similar properties

under constantly acting perturbations.

1
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Assume that

(5-3) II

F{t, x{t), x{g{t, x{t))), x'{g{t, x{t))))
II

H-
II

n V{t,x,y), (n > o).

If the solutions of the systems (v")*!) and (5‘2) satisfy the definitions {S^} and

(So% whenever (5*3) is satisfied, we shall say that the systems (2M) and (2*2) satisfy

the definitions and (^2) weaUy. Then it is easy to prove analogous results

for weak-relative-strict-stability and weak- relative-^strict-boundedness. We
merely state the following two theorems.

Theorem 3. Lei the assumptions of the lemma hold except that the condition (3*2) u
replaced by

(5*4) Wft, V{t,x,y)) V^{t,x,y) + a V{t,x,y) < Wft, V[t,x,y))

wherea = nC, Assume that holds. If the condition holds, then the systems

(2-1) and (2*2) are weakly-relatively-strictly-equi^stable.

Theorem 4. Let the assumptions of the lemma hold except that the condition (3*2) is

replaced by (5*4). Assume that (4*1) and (4*2) hold. If the condition (‘S'^*) holds, then the

systems (2*1) and (2*2) are weakly-relatively-strictly-equi-norm^bounded.

We note that many properties including the^ stability and boundedness
studied in [4] satisfied by a scalar differential equation imply the corresponding

properties satisfied by the neutral functional differential systems.
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1. Let f[Q, (j>) be a functioa defined for the range

and integrable in the sense of Labesgue on the surface of the sphere The
Laplace series corresponding to this function is

(1*1)

where

and

fie, 4’)''^ ^ 2(n + 1)
4') •P«(cos w) dcr',

COS 0) = COS 0 cos o' + sin 0 sin O' cos [4>
-

dir' = sin 0' dfr' d<h\

and the Legendre polynomials PnW is defined by the relation

[\-%xt +
n=o

We define on the lines of Kogbetliantz^, by f{m) the function,

/(“) = o—--— f >
^ 25r sin «» J c

where the integral is taken along the small circle whose centre is the point

[O, 0) on the surface of the sphere S and whose curvilinear radius is<a. The series

(M) then reduces to the form

(1*4) 2(« -f 4) /H sin <£> Pnicos «) do>.

J 0

We write in this paper

(I '5) F(<o) -/((o) (sina>)l-^

and denote by the «th partial sum of the series (M). We also write

l'-6)
1,4 + 4 ^ - cos «

- •' + '*

2. For Fourier series of a function F(x) integrable in the interval (
- tt, ir) and

periodic with period 27r, Szisz^ has estaolished the following theorem on the order

of partial sums.

[
389 ]



Theorem i

J. L \

(2-1) 11 \F(x)\dx-.0[^^^_p.

as A 0,

then

n
S Afii cos m A' = 0 (log log n),

1

^^ =r -
I

F{x) COS n X d X,

J 0
where

The order of partial sums of Legendre series has been calculated by Wilson^

who proved the following

Theorem,

(
2

‘2
)

if the integral

exists, then

For U ^ A I,

/

IT

0

/(cos 6] (sin d$

n
i'^/cos = S

r=o
P^(cos 6)

0 («). (0 < < 4)

_ 0(log n),{k= 0)

Later on in 1966 Beohar' has proved on the order of partial sum of Legende
series the iol lowing theorem :

(2’3) Theorem : At any interior point x of the interval (-1, I) for which

as f > 0,

then

SnW -/(*)
0(logn)l-“ ,(0<«<1)
0(log log «),(«=!)

Here we prove the following theorem on the order of partial sum of Laplace

series.

(2*4) Theorem. If F(a)) e Lip* (|
- k)^

then

. f 0{n^) ,{0<k<l)
^ L 0(log n)

,
(k ^ 0)

3, In order to prove the theorem we need the following lemmas :

Lemma 1.^

(3*1) Pn'(cos <o) + P'^^/cos 0)) 0(n^),

for all values of o>.
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Lemma ’I?

^
2

.2
^

{P,/(cos «.) + P'n+i (cos “)} sin a> = 0(n sin <«)

in the range w -

Lemma 3. ^
^

^3.3)
[P«'(cos <0) + P'n-t 1

(cos «.)] sin <0 = - -

R [{n -1- 1)
(cot f )4 {rj(« + 1)-^ + 0(n-3P (sin o*)’’]

+ 0(n-i (sio -)-*) + 0{n-i (sin o.)"*) + 0(«-«P (sin

in ^ ^ ^ *

4 Proof of the theorem. From the definition we have

= S (^ + i) /(“)
“•

I

j X:=0 0

It is know that [4, pp- i78]

Hence

% {2k + 1) PnW = ^ ^

I (2A + 1) Pn(cos “ =
I ^ tPn(*)]

I:=o
''

;tf=:COS ^"5

=: Pn{C0^ ") + P^n + i(^^^

In view of (1-5), (4-1) and (4'3) is given by
in view ui ^}y \

-

^
5^ = I

J’"
P(«) [P„'(cos «>) + P'n+i (cos <0)1 (sin

/ / "n
p

r
^ P(“>) [Pn^ (cos “) + P’»i+i(cos “)] (®i’^

where

= ii + ^2 4"

r ,{0 <k<i)
"" " L (ios «)i ”’> (* =

(,.5) Krs.,

r 0(n**), (0 < < i)

"
[_

0(log n), (^ = 0)

by the use of Lemma 1 and the fact that

Fia) = 0(<oi'^)

[
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(4-6) Next,
= 0{ti) f _j

(sin (o)* + i d<o,

J h~n

=: 0(1) by the use of Lemma 2 and the boundedness

of F(w).

Finally, by use of Lemma 3 we have

,A.n^ T ^ ^ R
f

{»+')
“+ u

/J ''3 - TT
[_

J /

{ rH« + (sin a)-i)}] rfo)

J*

^’(“) (sin <“)*’"^ d<i> + 0{n-y^)
J

F{<i>) <0-^ (sin<o)*:-i tfm

4- (n- 3/^)
IJ

= /j-l + + -^S-S + 4-1 + 4*6 •

(4'7-l) /,.2 J 2

/O Tt’^tV'
^

- 0 («-’/^)
I

<ol-4 o)-l + O(n-^'S) r (sin (fo,,

a„
•’ ’r/2

== 0 (
1 ).

(4-7'2) 4.3 =
0(«-^/=) f’"” ^^(“) (sin d.,

»it /2 ^w-n-1

^ Oin-'P) (oi-*! w**-! <f<o 4- 0(n'*) (sin
«))“-i

rfea,

" J a,,
J ^/2

= 0 (
1 ).

(4- 7-3) 72.4
= 0{n'^)

J
•^’W (sin “)^’’

-s 0{/2'’^) f + 0(/r^) r (sin doi,

^ <y^
*1 tt/^

= 0 (
1 ).

(
4 -7 -4) /a-s

= 0 (n-®^’') f ^(“) (sin <o)*!-s i/w,

r”
= 0 (n-s/”-)

71

[i)i“ 15l /n?b~2

^TT-n"^

7(0 4- 0 (n-s/2
)

(sin a))*’-s 7(o,

•'’r/a
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(4-7 5) h‘\ =
[ vV f

FH (cot® (sin (o)*^-

(fi 4- 1)^ r
^ /^((o) (cotf )^ (sin doi

= i (n + 1)^ \ r F{(ii) (cot (sin a)^*^ d(a

L a^

^ F(a+/J-n)( cot —^\ ^sin (ffl+Z^ti) rfa 1

'^n-l^n ' J’

and this is consequently less in modulus than

i Ui + J2 + Js + Ji)>

where

{fxn ^Trln+\)

r = (n + 1)^ r
""

1
F[i>^il^n)

(
cot

(
f sin (^4 dc»,

^ + 1)4 r \F{u>) (cot I )^ (sin a)^-4
(

;3 = (n+l)S
1
-Pl^+Z^n) - i^(“) I (cot

(
^4^))* (i“ (“+/‘n))^-^

;,= («+l)t P'"‘'“'*"|(cot (“±^‘))*(sln (.+rf-i-(cot|)^sm.)*’-i|
^ F(o))

Now,

(4-7-5i) J, = 0(ni) a,/'-'. J^n,

= 0 (
1 ).

(47-53) h = 0(ni)
f

= 0(1)

(4'7-58) Jg = 0(n!) T [0(/in)*-*’. </«>,

J

= 0{tfi)

(4-7-5i) Ji = 0(nl)
f’" l‘n

J ®n

= 0(1).
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Summing up we see that the theorem is proved for the case 0 < <;;; j
To prove the theorem for the case h —

0, it is sufficient to show that f ^ n

(log «), since the value of k does not effect the other results* ia " u

Now when A: ~ 0, we have from (4*7’5;,)

nTT

(4-8) Js = 0(«*)
J

'«*

= C(Iog n)

Thus the theorem is completely proved
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Abstract

A study of the effect of viscosity on the stability of the superposed fluids is

made and a dispersion relation is derived in case of two uniform fluids of constant
densities and velocities. Kelvin-Helmoltz and Rayleigh-Taylor instabilities are
discussed and it is found that these instabilities are independent of the viscosity.

Introduction

S. Ghandrasekher^ and recently Sharma and Srivastava- have discussed the
Kelvin-Helmoltz instability in the presence of a magnetic field for non viscous
fluids. We derive here a dispersion relation for the superposed viscous fluids

and discuss Kelvin-Helmoltz and Rayleigh-Taylor instabilities. It is first

supposed that the fluids are in relative motion to obtain dispersion relation in case
of Kelvin-Helmoltz instability and the fluids are set at rest to discuss Rayleigh-
Taylor instability.

The fluids are supposed to be viscous incompressible and moving with velocity

U in the ;tf-direction and separated by a horizontal boundary ^ = 0 . Let 5p and
be a small disturbance in density and pressure respectively such that the density

at any point [x^y, be p 4. gp and pressure p + 8^, The components of velocity

in the perturbed state be f/ + «, i;, w. The perturbed equation of fluids are :

(
1
) ^

"If + £ = +

(3) "1^ + 8?
“ ^ [(l7 + 07

)

where the coefficient of viscosity fx is supposed to be constant and the other symbols

have their usual meaning.

Equation of continuity, for this case is

0u 3o Zw

0. + 07'^0i
= ®

I
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. j nf pverv ^article remains unchanged and Bz can be expressed in

Alsothe densuyot^^
component of the velocity at corresponding perturha-

(5)

(6)
Si

Derivation of dispersion relations
, , ,

r Unwinds Ghandrasekher we analyse the disturbance into normal modes

j f «Ti * J and t, which is given by exp j(A,u x -\- kyy + nt). For solutions

in an3 , cjua.ions (I) ,0 6) bcaoma,

,Wa + >{Da)«' - - •'*. - ^’1“

I

' ipn'v - - iky Bp + p(^* - k^)o

g' ipn'w = - D{Bp) - i^P - i: I s Za &{Z - Za) + P-iD'^ - k'^w

(
10)

+ikyv + Dw = 0

(jl^
in'BP = -wDp

(1 2)
in'BZa = “W

where ~ ” — n k^iU.

Multiplying equation (7) by-tt„, and equation _(B) by -iky and adding and then

eUminating s/ between this equation and equation (9), with the help of equations

(10) (11) ^tttl (12), we obtain

D[Pn'Dw - fka)[DU)w \ -^ D'C ip{D^ - k^) Dw ]
- k-pn'w

= gk-{Dp) H- ik'^ P{D" -k^)w- k' ^ Siz -
«s)J

Here w/n' is continuous, hence integrating equation (13) between ^ - e and « + f

and in the limit £ -> 0, we get

(
14) As[ Pn’Div - Pka, (DU) w -t-

i> {D=‘ - A") Dw ] = [asP - jl's

]

where As bas its usual meaning.

In case, of constant density P and constant streaming U, equation (13) becomes

D{ Pn'Dw + ip{D"‘ - P) Dw ]
- k‘^ Pn'w = ik‘ p{D'^ - k^) w

which can be written as

(15)
= 0

where ^2 L- . V w, (kinematic viscosity).

The two fluids of densities Pj and separated by a horizontal boundary at

^ r=r 0, and the density of the upper fluids is ^ixicc r«;/n| is continuous, w

cannot grow exponentially and further if the real part off/ is positive, the solutions

for the two regions of the fluid, can be written as

= (de^® H- Be^^z) n/ for ^; < 0
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Wa = {Ae-^‘^ 4 n.^' for^ > 0

where rij' — n + k^Uj ;
4-' fovj =1,2

uu

(i{D' + k') —,
is also continuous^, hence we can have

iM,[2kU + (7i“ 4 k^) B] = + {q.,^ + B) B]

We obtain B = N. A, where jV
2F(m, - /la)

2kr[^2 ^ Mj) 4 i {n./ P.j - n/, Pj)

Thus the solutions of w are given by

= Aril' 4 for z < 0

= An^ {e~k^ 4- Me ~^^ )
for ,?: > 0

Substituting re, and in equation (14), we obtain

Pa 4 Pi rii'^ = gk'^\[Pi-Ps4y2-] [14 A^]

Putting the value of N from above we obtain, the dispersion relation

(16) { 2F(/*2 - Pi) + ‘'(PS"/ - Pi«i') }

k-^

= igk? p ^ -{- — T
. g ^

- Pi/i/ ]

Discu!»sion

We now discuss Kelvin-PIelmolts and Rayleigh-Taylor instabilities.

(i) Kelvin- Helmoltz instability : In this we consider the cases of two liquids of

same viscosity and of different viscosity.

[a) Two liquids of same viscosity \ Here we have = P2 >
putting this condition

in equation (16), we obtain

Pi - P, 4 -T
o

P^n./^ 4 Pin/® = gk

For n real we obtain the following stability condition

(17) kAU, - U,T < (..
- ..) + JIJ;—;)- }

where a. = — — and == -

—

^
Pj + P2 Pi + P2

(^) Two fluids of dvferent viscosity : Here we have ^ P*2 j
separating equation

(16) into real and imaginary parts, we obtain

t 7
g J

(18) 2F(P2 - M,) (P2«2'^ 4 Pl«/^) =

or P^no'® + Pi«i^* 0

(19) Pjfi/® 4 Pin/“ = gk- r Pi - Pa 4
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For n to be real equation (18) gives i7, = and now putting this in equation
(19)

we obtain

either > ^>2 or + "7(^7+

(20) i.e p^> P-i ox k <
'

f e

where k^ =
]

{^a
“

^i) 'y\ ^nd k^ is called the critical value of A.

If we solve equation (19) for re d value of //, we obtain the same condition as

given in equation (17), putting this condition in (18) we obtain the stability

condition for C7j ^ £^2

k!^T

(21) '’a
> Pi + -7- or A: < k ^

o

(ii) Rayleigh-Taylor instability. We put £7 •= 0 and then n' = n in equation (16)

w
and since win and ^(D^ -{ h?) - are continuous, we obtain the dispersion relation

for the case as

(22) { 2A;“(/‘2 - !“)) + i{Pi - Pi) {Pi + P,)« igk'^^Pi - i>2 -t"

-J- j
(P2 - Pi)

(a) Two liquids of same viscosity : Here we have equation (22) becomes

k'^r
= gk-^ o, - a,j 4" 7“

—

j ^ ^ (p, H- P2k-

For stability, n must be real, which leads to following conditions

( ^ 1

(i) either Pj > or (ii) k < kg

;

where kc =
|

(^s
~ Pi) f |

which are the same as given by Chandrasekher^.

(b) Two liquids of diferent viscosity: Here we have Equating real and

imaginary parts of the equation (22), we obtain stability condition as given in case

(ii), (a).

We therefore conclude that the stability of superposed fluids is h.dependent of

viscosity.
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1, Rainville [7] expressed Legendre polynomials of one variable in the form of

Legendre polynomials of another variable as follows,

(M) Pn (cos o) = / fin
r

\ sin ^') i!=o \ ^: y L “

n-k

Pjs (cos iS).

Bhonsle [1] made the substitution = 2o! in the above relation and used it

for evaluating a large number of interesting integrals.

An attempt has been made to obtain a similar series^ which has been med

later on for evaluating certain integrals which are believed to be new. The

following relation of Erd61yi [5, p. 264], has been considered for obtaining the

series.

{h2) (1-2 t X + /-)
-

u p
V

X - I
CO

rzzo

v-fi+r

f

p ^ {xy.

At the end, in the article 4, an application to a heat conduction problem is

considered.

2. In (1^2), substituting

and therefore,

we obtain,

cos in-
z = cosp,t =

(
2 -

1
)

sin

cos

Let p = m, p ~ wi + n, wet get,

in 8 « /»+»

j

|~COS (P - a)

(2-2) p" (-si„.) = r^
m+n l_cos a

Let = 0 in (2r2), so that

r=o \ r
cos

P (cos H).
m+n+r

[
399 ]



(2'3) Pn (- sin o)

CO / \ r QQg

cos <x J fs=0 \
^n+f {cos jG),

But Pn (- sin a) = {- 1)” Pn (sin «), thcrefoie (2*3) becomes

n / sin B f \ r cns {B -

(2-4) Pn ( sin a) 1
) j rlo { r ) L" “cos c«“ J

r (cos ^).

Let (S = 2 a in (2 •4) and we get,

n+1 00 / n-fr \

(2-5) Pn (sin «) = (- 1)" (2 sin a)
^ j

Pn4 r (cos 2 a).

Writing cos 2 « = a; and sin “ ~ ^ ‘ bnve

l-x\|
'~

2~J
Pflir (ac)-

3. The following integrals have been evaluated, by making use of (2'6).

Using the orthogonal property [4, p. 170 ; (8), (10)] for Legendre polynomials,

we have

/•^ _ n+i _ ?J+i
, / /T" r. \ (

= 0 , r < n_ «+i _ ?*+t. / n~z ~v \ f

= (-l)n
r-n/(2 r+l)'

If p and g are + ve integers and y < /», we have the Adam’s expansion

[10, p. 331].

/5.o\ P i.,\ P i„\ $ •riii'-r ^p~r A 2/) 4" 2^ - 4r + 1\ , ^
(3 2) P^ (M) P, {,)

-
(,-2

j7T2g-2r+ 1 j
(^).

where Af =
L3. 5 (2r- 1)

Thus making use of the result (3*2) with (2’G), M e obtain, when p ^ q - 2r

.l(-l)"Ar I

1^ r-"'
2~/

Pp{x) P,{x) dx = i
r:=o {2p-^2g-2r+l)

PAq~2r \
^

2»+i
(])p (^jj {Hq)y{p±q)}

p-\-q-2r-n) (4)^+3+i p ! 5 ! n ! (pt q-n)
!
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:]

and

(3-5)

Pi
- ?>'(/' + (? + i)>

~ — — ,^iip + g~n -
1), I

;

I - /», I -
<7, - (/» 4- (?). - HZ' + ?), - i (/» 4- j - 1) ;

Following the method of Shabde [8] , if

/»! -h Aa + Aa + + Z'r — j

^ , we have,

^2j,)ff+r-i *

^pi (-?') “ '

^Pr W* -^s (^ ~ 2/) dy

U !)'^ {r (
2a)1_

(2^+ 1)!/=:, (AlfiA)!

r __t
J-a

Grosswald’s formula [1] for the r th differentiation of /*„(«) when* = 1 is

given by

(3-6)
dV (n + r) !

U ~ 2''r!(n-r)r

Thus differentiating (2*6) r times with respect to * and using the above
formula, we have

(3-7)

r ^ s''
-

(
- 1)«

3

f
1 ^^

L V 2 /
im

i»=i

n + A (n 4- 27-) !

“ (
" A; "Tifr"

By using Neumann’s formula [10. p. 320]

I, n 4- f -1- 1, n 4 2r 4 1 .

f + 1, n 4 1 ;

with (2-6), we get

Q.n(A‘) = i f ^dyJ-i (^-y

('i2 /

From Erdelyi [4, p, l7l], when ir > - 1, we have

|3'9)
f X"' Pn{x) dx
i 0

2-^-1 r;i 4 v
)

r( I + i-’d + i +f j
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Using the above result (3-9) with (2‘6), we get

(3*10) ••} I

dx

a- «-l-AN _/3 + o- + fl + A

2"~2-j H 2

P+ 2^g+2

CT 1 O*
^

a 1+25 "2
’ 4-/2

1
^ 3 + (t4-;2H-^

0i> ^2J ^*+'2
2 ^ 2

I

i
1 < )

and p z=: q \

The hypergeotnetric series should be terminating when ^ g + [, We can

obtain many particular cases of the results (3*10).

We have due to Brafenan [7, p. 168], the following generating function for

Legendra polynomials,

(3*11)

a .

1

1 t •~2'

n=o ni n\

where P = (1 - 2xt -t

Using the result (3*11) with (2*6), we get

r- nn ^ / /iz;\ r i-^^;

I
3 -I 2

) f 4 1—

>

J -1 2«-n [—] “

- (°)n (
1- ‘>)n‘ 2 . p r a + n, I - a {- n, h + n ;

“ n\ n\
(
2n+ 1

)

®
® L 1 + ”> I + « ; J-

If /z = - f;2,
we have

(313)
/

1
(-J )"

-1 2n+l

Pm(<-P) Pm(i+P)
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_ (- (l+w)n • 2. pf-M + n, 1 + m+n, n + l;
'

~ « ! « ! (2n+l) ' X « + n + I

;

We have from [7, p. 164(2)]

(I - x,)-" .F,
[
I • -y

;
- X‘Mi-

Using (3-14) with (2-6), we get

(-!)« (I-.!)-" „ / /c;\ pfl
. 1

J.--- .
,(.-.)•]

J -1 2nH / i - 1

^a;

_ _ p
n I (2n + 1)* ^ ^

We have also due to Mitra [1],

^ w + I >^ + I 5 A

^ f j

(316)
I

^

^n(i - 2/) Joiy^) y. = ^72^^+i(^)-
J 0

y
l-x—- in (2'6), we get

(
- ^ fn 4- k

2n-)-iyi+i k
Pn^k (1 - 2/).

Combining the above relation with (3’16), we get

(317)
1 (-l)n

<;H+ i yUHh • Pn(j') Job'^) J'

Expanding Jo (yx) in terms yx and integrating the left hand side ol

term by term, with the help of (3*9), we get

(318) J^S^l^.p^[y)Job>‘) dy

_ (- y (2 ~ 2 )fc('~^)^ / _*iy
'

2 hto k\ (l)j {y-n)h (i)i \
4 ;

(3-17)

[
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(-1)”
2^^

i- - 1 --t 2‘ 2

1, 1 - I

_
k

Thus equating {3-17) and (3-18), we get

(3-19)
2 CO /n + k \

7 ,L( ^ J
/2n+2?!j+ i W 2^3

1 " 1 ” .

4 2
’ ^ 2^ ’

1 - S ;
^

Using the following orthogonal property of Bessel functions, for v > -

(3-20)
i:-'’

V+2?l + I + i-w+l (/) dt = 0, m ^ n

1

= 2(2«+.+r) ^ m = n

with (3*19), we get,

(3-21)

ptO

^2^3

\ ^ 1 1.
^ ~ ^ ~

2
’

1, 1 - I ;
^ An+s^+i W

1

Also we have,

(3-22)

f ^ (- 1)=’

J 0

^2w -f- 2A) -•}” 1)

•1 n . ^
2 2 ’ 2 ’

4

.1 ,
1 - n, I ;

= f" 1
Jo ^

4 r CO / n-i-jb

_ Jo=o \ h
/‘in+y^J+i

J]

{x)
J

dx

o “ (n + A:) ! (n + A) ! I

~ ^0 k\k\n\n\ ’ (2n + 2A: + 1)

2

(
2« + 1

)

[«+],« + -1

1. « + I : M
4. Jn application io a Heat Conduction problem*

Churchill [2] considered the problem given as follows. If U (a:, i) represents

temperature in a non-homogeneous insulated bar, along the axis of with its ends

at = - 1 and Ai = + 1, dn which the thermal conductivity is proportional to

(I ~xr)y the heat equation takes the lorm,

dJJ

dt

where b > 0 and constant, if the thermal coefficient Co is constant. The ends

^ ~ d: 1 are insulated because the conductivity vanishes there.

(4*1) a1
dx

f/l ‘A sn
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If C7 (a:, 0) =/(.v),

the solution oi the above equation (4’1) is given by

(4-2) U{x, t) = ” —
- H—

^

exp [
- n {n A' \) bl} Pn {.x)

f f U) Pn (^)

n—0 ^
-2

The equation (4-1) can also be solved with the application of Legendre

transform. This transform was first introduced by Tranter fQ] m 1950 and was

later on used by Churchill [3], and Nortnington and Blackwell [6] in solving e

problem on heat transfer.

Let there be a function/(A:) which can be expanded in Legendre polynomials

as follows,

CO

(4*3) fi^) “ 'S, dn W*
^ n=o

Legendre transforms are defined as

(4-4) 7 (n) = JVW W dx

with the inversion theorem being given by

f{x) = i S (2« + 1)/ («) Pn W-

Applying Legendre transform to (4‘1) and making use of Legendre s equa-

tion,

(4-6) (1 - *“)^ W
I

=

we obtain finally,

^
4 * 7

)
±U{n)^-bn {n + 1) U {n)

The solution of (4*7) is given by

(4.8) £7(n)
+

The constant A can be evaluated from the initial condition,

Uix,o)=fix)

Hence, [U (n)]i=o =7 [n).

Therefore (4*8) becomes

(4-9) I7(n) = 7 (n)

The inversion theorem (4'5) will therefore give

{4T0) U {x,t) = I 1 (2n -f 1) /(«) ?« W-
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A function fix), which will suitably serve as initial temperature distributions

is (2'6), expressed as

(4-11) = “ (1-x)
“ im

From (3*1) we know that

m+i
^ 2

,
m±± ^^2 (I - x) 2 Pm

Thereforcj we have

(4-12) fm («) = f\ n-r

2 J Pn (^) dx i

Oj « < w

V._ ^

(

“

\ n-m / (2«+l)

,
for « > m.

m / (2« i“ 1

)

Thus from (4T0), the solution for the function/(Ar) given by (4T1), will be,

{4-13) Um[x,t)= 2 ( ”
)

«-6n(nfi)t

n=a \ n-m J
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Abstract

The author presents here a systematic discussion on certain bilinear and

bilateral generating relations associated with the generalized Leguerre polyno-

mials
(
a:)} defined by

(1 - exp
^

{x) PK

It is observed that the four formulas proved recently by Jain [7] are only

specialized or limiting forms of the results of Erd61yi [4], Mcixner [B], and the

author [12, 13, 14 ].

For the Laguerre polynomial

(a)

L [z)
n

n / n+a\ (_

Jain[7] has recently proved, in these Proceedings, one bilinear and three bilateral

generating functions in the formsf

U)
^ ” 1 ^ T ^)n

n=o (1 + ^)n (1 d- b)n n
{x) L ^ iv) Z'^

= (I -z) -i-b-k exp li_±.
1 -

y)z % (1+6 4- k)n r xyz In

Z n^o ! (1 4" n)n (1 4- 6)^ ^ (i

(
2
) 1 r

’
’

* 1 f (>'> = (1 - exp
(
- )

.=0 L 1 + a • J \ 1 «

/

Presented to the thirty-eighth Annual Session of the National Academy of Sciences

fit may be of interest to note that the formulas (3) and (4) appear incorrectly on page

of Jain’s paper referred to above.
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(3)

and

(4)

(i>

• 3^G
. L » . ^

xz xyz'
d,d,d,c,a-b;c,li-a, 1 + « . - 71^.

eo ^ r
“ ^ ’ "1

2 -Al
,

*
n=o L- 1 + ^ ;

.

L {y) z^ (I + z]^ exp {-yz)
n

xz
d,-bi \ + a; . xyz

f -y ^1
n=o {I + n

1. 1 7- i _ « j
I

= (1 + s'^M ^S> ~ b, d
I g, ^ + a,

j
,

where $1 denotes one of Humbert’s confluent hypergeometric functions in two

arguments defined by means of (see, [5], p. 225)

and

P ;y I x.y] = ^ {0)in

m^n-o (y)m+n

(i)r
l̂
'

;

y, y', y' XfyyZ]

__ ^ {<^)m+ tt+p (P)>n {P')n ^ _^P_

m,n,p~o {'^)tn {y )n+p ^ >* ! p !

# / “1

% Hm (yg)m -rp (i8')n 2!! ^ .

m,n,p=o (y)m (y )r+p ! « ! ^ !

A simple analysis will reveal the fact that the confluent triple hypergeomctric

functions occurring on the right-hand sides of (2) and (4) are essentially the

Humbert functions and 4^2, where ^2 is defined by [5, p. 225]

4>2[ ^ ; y 1

m,n~^ {y)m-\n

and consequently, the reduced forms of the formulas (2) and (4) are

[
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“ „ r " 1 (")

2^1 X L
(

L I + a; J n

( 1 {
1

<a^, a - A
; 1 + a

:
j-— j^yz

Z + xz‘ (1 - «) (f-^; + Xz)

n=o (1 + a)„ „ i] + b-n; J

= (1 + z)^ (I +JZY^ (tiJ - ; 1 + a
i

, ^ 1
L i + Z I -i-jzj

respectively.

The main purpose of the present note is to observe that the formulas (1) and
(2) in much more general forms were proved many decades earlier by Erd^iyi [4]
and Meixner[8] and that all these results admit themselves of further elegant
generalisation which we have derived elsewhere {see [12], [13] and [14] ).

-n, d
;

(a)
^ ^

L (z)
n

and the well-known Kummer transformation [5, p. 253]

the formula (1) assumes the desired form

» (b+k)ffcu p f"”’ 1 F f 1-- n^ “ L « ;
J
“

I t / r ^
(“)” W" ”

'

r ^ -f /t-fn;

jzri
L a + n ;

^ ^ J

b “h k d" ri
j

b n;. Z-i (i-^r

Obviously, this is a special case of Erdelyi’s formula [4, p. 344]

n=o ^
• L a

;
}

n=o (r'jn (o)» ”
• L

a + n; X,
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r r , LI ir
• A + « ;

i + n IJ,
^ 1

1 j L ( I - J
> s < 1,

when p = 0- = 0 and \ = i + A, ErddJyi [4, p. 344] does state the specia

case p = fT = 0 of his formula (8) in the form*

(9)
“
n=o Wn [o)n n n „-a (a)^ „ I

r A + n
; xz 1 E- [

A n
;

1^1 < 1.

Next we notice that the confluent hypergeometric function on the right-

hand side of (2) equals

.=0 « ! (1 t «)a I (1

T ?
4* -2,)^ J f,5=0

{d -f )i)f+e {a - b)s
, ( XZ '\>'+s

r! J !
(I + <J + n)s i 1-!^ )

,j
TO (t/ + n)^

( xz

0 n !
(l + a)nL 0 " 2)^ J »=<> ^ * \z-l ) a=o J

! (1 + a + 4

« Wn r„
„=o«! (I 4- L(1

5/£_-T
“

r XZ

r~o r
! (1 4- <3 4" \ Z - I J

*

by Vandermonde’s theorem [1, p. 3j, and the bilateral generating relation
(2) or

(5) can thus be put in the equivalent form

«'«) I.^ 4]

L M~ ^ J

it is easy to see that (10) follows rather immediately from Meixner’s formula

( [8], see also 15], p. 84)

*See also the formula (27 on page 288 of Erdelyi et al, [5]. For an elementary derivation of

(9) with a slightly different right-hand side see the formula (2*3) of Srivastava [12],
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)



I— 2^ ]1 ^
I

^.[”'^>1.”
n=“ L a; J L 6; J

r \ -i- n, « + «
; 1

r_^l ” 1*1^1
•’'^'L 6 + .;^ J ll'-H

’ 'k I
< 1.

when_^ is replaced hy jy/e, X = b^ and ^ co.

The foregoing analysis when applied to the remaining formulas (8) and (4)

will readily reduce them to their equivalent forms

r -n,d; n
r 1

iP. J U”
L a; J \ \-b-n; J

xyz)^
r 6 , rf + «;

n=o (^)n n !
- 1

L a + n
;

^

r - n ;

- ' -n, d
; 1

a •zPi

1

J U”La; _ . 1 - ^ - n ;
J

= n^^yh ^ Wn {-xyz)!l F
] F \ \z]

respectively.

Both (12) and (13) are evidently immediate consequences of our bilinear

generating relation (3*3) in [12], viz.

Wj
,

« . • ^ J ”| |~ ^2 > • • • > ®J* )
*1

^ rirlFs-hl
j

jy \z

> • • • i I
d L 1“X“"W, ^2 > • • • > 13$ I -1

(^i)n {^j)n
^ CO i=i i=i f-. y-us-^n

= (1 -^)-^ 2 ^-^f
-

n=0 q s ^ '

II {bj)n n (i8i)„
i=0 jf=l

• pi-l^q

X, ^2 + • • • > + « 5

. 5 ^2 + « ;

"1“ • • • 5 + ^ >

/3i + + « ;

«; 1
h

« ; J
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valid for such values of
|

| , \
i and

|
|

that the two sides have a meaning

provided that p K <3 r ^

It may be of interest to remark that in the course of an attempt to give

extensions of the welhknown Hille-Hardy formula (scc^ e.g,, [6], p, 189)

(15)

CO
V

n i

r(^ + « “k i)
= (1 - exp r - (^ + y)z

]
n n

[ 1 _ ^ J

]•
2.y(v--)

L

< 1
,

which follows readily from (9) when a = 6 = X, we have recently applied the
Laplace and the inverse Laplace transform techniques and the method of multi-
dimensional mithematical induction in order to obtain several new and distinct

bilinear and bilateral generating functions for certain classes of generalized
hypergeometric polynomials. These results include (14) and the bilinear general-
ing function

(16)
“ (x)n p

r
- "1 ’

-
_ '.rr p+1^3

* * > 1

T I-
6’

• • 3 ; -|

y
oil

• > - Pi , .' * * i P a \
J

= (i-^)-^

(X)Hfi {aj)n n{>yj)n
oo i = i

n ! I®r {bj)n li {i3j)a
jzz\ J=zl

xyz

• p+lPq Fs
\+ . . . 5

^y^-j-72
; yz

which unify scores of hitherto scattered results in the theory of generalized hyper-
geometric polynomials (see [9], [10] and [15])* For instance, the special case

^ = 1 of (16) corresponds to the main formula (4), p. 1320 of Brafman [2]
when X ~

5 and in the limit as a: 0 our formulas (t4) and (16), as also (2 ’8) in

[12], reduce to the results proved earlier by Gliaundy [3, p, G2]. For

=

^
=

our bilinear relations (16), and (3*4) and (3*5) in [12], arc due to Meixner [8] who
obtained them two decades ago by transforming the Fochhammer contour integral
associated with Gauss’s hypergeometue function.

We should like to conclude by mentioning that several extensions of the

generating relations in [11] and [12] to hold for certain classes of general double
hypergeometric functions appear in our subsequent works 113' and [14], Indeed
in terms of the Appell function [5, p. 224]

[
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^ ^ T
“ (“)m+« {HU {Hln

F, u, =
...

i._„ „-]
m,n=o

we find it worthwhile to record the following very specialized, but nevertheless

interesting, forms* of some of our results ;

(17) f Mn
fi=o ti !

(18)

r- n, a ; 1 f
-n.

1
2^i X .fA

1 -X
y K"

L b; .J L - n; J

(1 - yz)->^ k, i^;b
xz

’z-
xyz 1

1 ’ K - 1 J

^ p - rii d ; r
cr - n,e; *]

,F, X

^

;

2^1
1

y \zP
b; J

(1 - z)-^ r ^%-rm?- fA d ^ n,P,}, + n; a -^n;x~ 1

n=o « 1 K^h (o)« L * J

F,
, ,

yz 1 r xyz
+ n, O', X + n J ^ + n ; j, J L

The last formula reduces, when p = o- = 0, to Meixner’s bilinear generating func-

tion (1 1)
which, in turn, yields several hitherto scattered results including, e, g.,

(4'3) and (4*6) of Weisner [16, p- 1037].

•Note that in view of (5) and (6), the results (17) and (18) do incorporate the four formulas

(1) through (4J as their specialized or limiting cases.
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Reactions of ethyl orthogermanate with acetic and benzoic acids in different

stoichiometric ratios have been studied.

In a number of recent publications from these laboratories, interesting and

useful results have been described in the study of the reactions of the alkoxy

derivatives of aluminium^ silicon^''®, titanium®"®, zirconium^ with carboxylic

acids and anhydrides, (e. acetic acid, acetic anhydride, benzoic, lactic,

mandelic and salicylic acids) in non-aqueous medium. In view of the above, it

was considered of interest to study the reactions of ethyl orthogermanate with

acetic and benzoic acids.

Ethyl orthogermanate on being allowed to react with one mole of acetic acid

in refluxing benzene gave the triethoxy monoacetate derivative in almost quantita-

tive yield :

Ge(OC,H,)^ + CH3GOOH ^ GeCOOC^CHg) + G^H^OH

when the above reaction was carried out in I : 2 molar ratio, only 1*7 moles of

alcohol could be fractionated out azeotropicaliy and a basic acetate, GeO^.g

(OOGGH3)o* 25 {OCl2^5)o’75 'vas isolated from the reaction mixture.

In order to avoid the type of decomposition observed above, the reactions

of ethyl orthogermanate with acetic acid were carried out in cold in 1 : 2 and 1 : 4

molar ratios when the resulting products were found to have acetate : germa-

nium ratio of 0-88 : I and 1.08 : 1 respectively. The former compound on being

heated in a bath of 100-1 10"" for about half an hour appeared to yield a deriva-

tive with acetate :
germanium ratio of 0*66 : 1.

The reaction between ethyl orthogermanate and acetic anhydride (i : 4)

in refluxing benzene yielded a product which was found to have acetate
:
germa-

nium ratio of 0*89 : 1.

It appears that the main straight-forward reaction of ethyl orthc^ermanate

with acetic acid or anhydried can be represented by the following equations :

Ge(OG2H6)4 + GHgCOOH (G2H50)3 GepOGCHs) + G^HgOH

GeiOCaHj)! + GHaCO)^ (G2HbO)3
GelOOCCHg) + CH3COOC3H5.

Further reactions are slow and accompanied with side decomposition.

It is interesting to recall that in the corresponding reactions of alkyl ortho-

titanatess with acetic acid or anhydried, a diacetate derivative is formed by an
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exothermic facile reaction and in this case also further reaction is much slower
and accompanied by side reaction which mainly consist in the elimination of ethyl

acetate :

fast

Ti(OG,H»)4 + 2(CH3G0),0—->(0,H„O)a TiCOOOOHa)^ + 2GH3GOOG3HJ
slow

(CaHjO), Ti(OOGGHs)2 4 (CHsCOjp

—

>(G.Jrl^O) TiCOOGGHg), +
CHaGOOGjH.

(GatlrP) Ti(OOGGH3)3 O = Ti(OOCGH3)3 + OHsGOOGaHs

In view of the above interesting results the reaction of germanium tetraacetate

with ethanol (I : 4) was also carried out at room temperature and the resulting

product was shown to have acetate : germanium ratio of 1'05 : 1.
°

Ge(OOGGH3),i + SGaH^OH (O^H.O)^ Ge(OOGCH3) + 3GH3GOOH (4 moles).

The reactions between ethyl orthogermauate and benzoic acid have also been
studied in different stoichiometric ratios. The reactions follow a pattern quite
similar to the course of reactions, described by Mehrotra and coworkers for alkyl

ortho- titanate :

GelOG^H^), + G3H3GOOH (G^HjOs GelOOGG^H^) + G3H3OH (i)

I

GelOG^H.), -i- 2O3H3GOOH (C,B,0), Gc{OOGC,B,), -f 2G3H,OH
(2)

II

GeiOCaHj), -I- SC^HjCOOH (G3I-I3O) Ge(OOGG3H„)3 -f 3G3H3OH
(3)

The preparation of gerinauium tetrabenzoate was also attempted by refluxing
ethyl orthogermauate during the course of which only 2'87 moles of alcohol could
be fractionated out azeotropically. On allowing the reaction mixture to reflux

for a few more hours, a fine white solid separated. This was heated under
reduced pressure to give a light amorphous jiowdcr which corresponded in analysis
to germanyl benzoate. The reactions can, therefore, be represented by the follow-

ing equations ;

GclOGaFyi + 3C„H,GOOII (G^H^O) Ge(OOOG3H3)3 +
{C3H3O) Ge(OOGG3Hj)3 (CoHsCOO)^ Gc = O -f C^HsCOOC^H^ (4)

The formation of germanyl benzoate in the reaction (4) was confirmed by heating
the compound (III) under reduced pressure :

heat

(GsHbO) Ge(OOGC„H„)3 > O =. Ge(OOGC3H3)2 + G3H3GOOG3H,
red. press.

Diethoxy germanium
_

clibenzoalc, described above (II), was found to inter-
change its ethoxy groups with higher alcohols, e, g. n- butanol and tertiary butanol

:

(GgHjO)^ Ge(OOGa„IT„)3 4 2R'On -> (R'O)^ Gc(OOGO„ir5)3 4 2G3H5OH

The alcohol produced in all the above reactions wa.s removed azeotropically with
benzene, and the course of reaction was followed both l,>y estiinating the liberated
alcohol in the azeotrope and the analysis of gerinunium in the products.
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Experimental

All glass apparatus with interchangeable joints was used and moisture was

excluded from all the reactions.

Analytical procedures and methods for drying the reagents have been descri-

bed elsdwhere^^ Ethyl orthogermanate was prepared by the ammonia method^^.

Germanium tetraacetate^^ prepared by reacting germanium leti'achloride with

acetic anhydride in the presence of thallous acetate. Acetic acid and anhydride

were purified by fractionation. Benzoic acid (B. D. analar) was dried at

40°/ 1 ^ immediately before use.

1. Reaction between ethyl orthogermanate and acetic acid; molar ratio 1:1.

Acetic acid (0*38g) was admitted to a mixture of ethyl orthogermanate (l-58g)

and benzene (40g). On shaking the reaction mixture, a clear solution was obtain-

ed which was refluxed under the fractionating column for about two hours at 100°.

The ethanol liberated in the reaction was fractionated off azeotropically. The

excess of the solvent was removed under reduced pressure and the compound was

dried at 32°/0‘5 mm. for about two hours. A colourless liquid (I'fiOg), slightly

more viscous than ethyl orthogermanate, fuming in moist air, was obtained.

Found : ethanol in the azeotrope, 0’26g (1 mole requires 0'28g).

%, found : Ge, 27*20
;
OG.Hg, 50*63 ;

OOGGH3, 22*13
;
Calc, for

(CaHgOjs Ge (OOCGH)3 : Ge, 27*21
;
OG^Hg, 50-66

;
OOGGHs, 22-13.

2. Reaction between ethyl orthogermanate and acetic acid ;
molar ratio 1:2.

Acetic acid (M4g) was treated with ethyl orthogermanate (2*82g) in reflux-

ing benzene (40g) for about three hours, and the benzene-ethanol azeotrope was

collected very slowly. More benzene {20g) was added and the mixture was reflux-

ed for another two hours and the collection of the azeotrope was continued. The

remaining solution was evaporated to dryness under reduced pressure. A colour-

less semi- solid miscible with benzene together with some insoluble impurity was

obtained. The soluble portion was extracted with benzene. On drying it under

reduced pressure a spongy white solid {l’09g), soluble in benzene, was obtained.

Found : ethanol in the azeotrope, 0-89g (2 moles require l*027g).

found : Ge, 49*91
;
OG2H5, 23*20

;
OOCGH3, 9*93

;
Calc, for

GeO^.g (002115)0.75 (OOCOH3)o.25 : Ge, 50*01; OG2H5J 23*28; OOGCH3, 10*17.

3. Reaction between ethyl orthogermanate and acetic acid in cold ;
molar ratio 1:2.

Acetic acid (0*99g) was introdneed to a mixture of ethyl orthogermanate

(2*06g) and benzene (2g). On shaking the reactants for sorne time a slight turbidity

appeared which, however, redissolved on keeping the reaction mixture overrught.

The solvent was removed under reduced pressure and the product was dried

at 32°/0‘5 mm. for about two hours. A colourless liquid (1*91 g) was obtained.

%, found : Ge, 28*40
;
OC2H5, 50'40

; OOGGHs ;
20*50.

(Ge : OG2H5 ratio = 1 : 2*86
;
Ge : OOGGH3 ratio = 1 : 0*88).

The above compound (T54g) was heated in a bath of 100-110° for about

30 minutes and then evacuated under reduced pressure for about two hours. A

colourless liquid (l’27g) was obtained,

%, found : Ge, 30*58
;
OG2H5, 49*00 ;

OOGGH3, 16*50.

(Ge : OC2H5 ratio = 1 : 2*58
;
Ge : OOCCH3 ratio = 1 : 0*66).
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4. Reaction between ethyl ortkogemanate and acetic acid in cold
; molar ratio 1 : 4,

A slight turbidity appeared on shaking a mixture of ethly orthogermanate

(r65g), acetic acid (I'57g) and benzene (2g). The mixture was kept overnight

and then evacuated under reduced pressure at 34°/0-5 mm. for about three hours

A colourless, fuming liquid (l-52g) was obtained,

%, found : Ge, 29-00 ; OGsHj, 48-00
j OOGGHs j

25-50.

(Ge : OCaHj ratio = 1 : 2-67 ;
Ge ; OOGGHs ratio = 1 ; 1-08).

5. Reaction between ethyl orthogermanate and acetic anhydride
; molar ratio 1 : 4,

Acetic anhydride (2-80g) was added dropwise to a solution of ethyl orthoger
manate (l-73g) in benzene (40g). On shaking a slight turbidity was noticed
which disappeared on keeping the reactants overnight. The reaction mixture
was refluxed at about 100° for 3-4 hours. The bath temperature was then raised

and the distillate coming at 80° was collected. About 25g. of the distillate was
withdrawn and the rest of the solvent was removed under reduced pressure and
the product was dried at 55-60°/0-5-l-0 mm for about two hours. A slight turbid
liquid (l'40g) was obtained.

%, found : Ge, 28-60
; OGaHj, 49-60

; OOGGHs, 20-80.

(Ge : OC.2H5 ratio = 1 : 2-8
;
Ge OOGGHs ratio == 1 -. 0-89).

6. Reaction between germanium tetra-acetate and ethanol in cold
;
molar ratio 1 : 4.

Noticeable heat was produced when a mixture of germanium tetra-acetate

(l-06g), ethanol (0-63g) and benzene (20g) was shaken together. The excess of

the solvent was removed under reduced pressure and the compound was dried
at 32°/l mm. for about two hours. A colourless moblile liquid (0-76g) was
obtained.

%, found -. Ge, 26-00
; OGsHs, 46-00

;
OOGGH3, 22-20.

(Ge : OG2H5 ratio = 1 ; 2-85
;
Ge -. OOGGH3 ratio = 1 ; T05).

Thus in experiments (3-6) the final product was mainly, (G^ 1150)3 Ge(OOGCHs),
which requires Ge, 27-21; OGsHj, 50-66

;
(OOGGHg, 22-13%.

7. Reaction between ethyl orthogermanate and benzoic acid ; malar ratio 1 : 1.

Benzoic acid (0-97g), ethyl orthogermanate (2*02g) and benzene (40g) were
shaken together. The clear solution, thus obtained, W'as refluxed under the
fractionating column at 100-150° for about T5 hours. The ethanol liberated
in the reaction was completely fractionated off azeotropically. The reaction
maxture was rendered free of solvent under reduced pressure and the residual
product was dried at 50°/0-5 mm. for T5 hours. A whitish slightly viscous liquid

(2-58g) was obtained.

Found : ethanol in the azeotrope ; 0-36g (1 mole requires 0-368g).

%, found : Ge, 21-90
; Gale, for (C2H50)8 Ge lOOGGeHj) ; Ge, 22-07.

On heating l-5g of the compound under reduced pressure, a colourless

liquid (O'Sg) b.p. 75-80°/3-4 mm. was obtained,

%, found : Ge, 15-10.

The residue in the flask contained Ge, 43-64%.
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8. Reaction between eth}l orthogemanate and benzoic acid
;
molar fatio I : 2.

Benzoic acid (l’87g) was admitted to a solution of ethyl orthogermanate
(l*94g) in benzene (45g). On shaking a colourless solution was obtained which was
allowed to reflux for about two hours at 110^. The distillate was withdrawn
dropwise between 68-80'^. The pure benzene (b. p. 80°) was distilled under high
reflux ratio. The product was freed of solvent under reduced pressure at

50°/ 1 mm. A whitish viscous liquid (2*99g), miscible with benzene, was obtained.

Found ;
ethanol in the azeotrope, 0*70g (2 moles require 0*70g).

found : Ge, 17-90
;
Calc, for (G2H50)2 Ge(OOCGeH5)2 : Ge, 17*92.

9. Reaction between (C2H50)2 Ge(OOCCgH5)2 and excess normal butanol :

The compound, (from experiment, 8), (l*80g), normal butanol (3'Og) and
benzene (30g), were refluxed for about two hours at 110°. The ethanol liberated
in the reaction was fractionated out very slowly. The remaining solvent and
butanol were removed under reduced pressure and the compound was dried at
40°/l mm. for about two hours. A white semi-solid (2*00g), soluble in benzene,
was obtained.

%, found :Ge, 15*69
;
Calc, for GepOGCgHs)^ : Ge, 15*74.

10. Reaction between (C2HqO)2 Ge(OOCG2H^)2 and excess tert, butanol :

The compound (from experiment, 2), (l‘82g), tertiary butanol (4'45g) and
benzene (40g), were allowed to reflux at 115-20° as usual. The ethanoh benzene
azeotrope was slowly collected. The volatile fractions were evaporated under
reduced pressure and the compound was dried at 45°/2 mm. for about two hours.
A white semi-solid (T98g) miscible with benzene, was obtained.

Found : ethanol in the azeotrope, 0*38g (2 moles require 0*4ig).

% found : Ge, 15-80
; Calc, for Ge (OOCCgH,)^ : Ge, 15*74.

1 1. Reaction between eth^l orthogermanate and benzoic acid
i molar ratio 1 : 3,

Benzoic acid (3j46g) was added with the help of benzene ("iOg) to ethly
orthogermanate (2*39g) and the reaction mixture was then refluxed for about
three hours at a bath temperature of 120°. The distillate was collected dropwise
at 68°. The temperature of the distillate then rose to 76° after nearly 8 cc. of it
were withdrawn. At this stage the reaction mixture was allowed to reflux
more, for about two hours. The azeotrope was again collected dropwise till the
temperature of distillate became steady at 80° and showed no tendency to decrease.
The subsequent fractions of the distillate were collected separately under a high
reflux ratio, 1 : 20.

^

The product was freed of solvent under reduced pressure
at 52°/ 1 mm. A white semi-solid (4*3 ig), soluble in benzene was obtained.

Found : ethanol in the azeotrope (fractions collected other than those distilling
at 80°), T25g (3 moles require T30g).

%, found : Ge, 15-17
;
Calc, ior (G2H5O) Ge {OOCGqU^)^ : Ge, 15*09.

Above compound (2*0g) was heated under reduced pressure at 100-l50°/0*05
mm, for 2*5 hours. A white powder {T28g) insoluble in Ijenzene, was obtained.

%, found : Ge, 21*01
,
Calc, for O-Ge (OOGCgHjl^ Ge, 21-93.

12. Reaction between ethyl orthogermanate and excess (< Mmoles) benzoic acid :

Ethyl orthogermanate (‘2-06g), benzoic acid {4*48g) and benzene (60g) were

refluxed under the column for many hours (6 hours). The ethanol formed was
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removed azeotropically. A white finely divided solid began to *

nearly all the ethanol was fractionated off. At this stage the reao^
was further refluxed for about eight hours when more solid senarated"
then allowed to stand overnight. The supernatant liquor was decanted
with some solid mass- The residue was thoroughly washed with ri,.„ u
and dried at 70°/0-1 mm. A white powder (2-60g) was obtained

^

Found : ethanol in the azeotrope, l‘072g (3 moles require M2g)
The above solid (2-Olg). was heated in a bath of l05°/0-2 mm fnr,K

two hours when droplets of a colourless liquid (having fruitv smelll inr^.L

ingS ^ ^ ^ insoluble in benzene, was left in the disfilh

%, found : Ge, 21-09
; Calc, for tO=Ge(OOCG„H5)a]„ ; Ge, 21 'OS.
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Abstract

In this paper, some rules connecting different classes of self-reciprocal

functions have been stated for the generalised Hankel transform, which may be

introduced by using a symmetrical Fourier kernel due to Roop Narain. Further,

by making use of these rules and Hardy’s Formula to give resultant of two kernels

K{x) = Pi(*) Pi[xy) dy,

where Pi(x) and Pf^x) are Fourier kernels, certain theorems have been established

to investigate the self- reciprocity of functions in the generalised Hankel trans-

form. Various particular cases have also been discussed.

1 . The Hankel transform

(1-1) Jv{xj>)Ay) dy

may be generalised by using a symmetrical Fourier kernel, given by Narain[9] in

the form :

(1-2) gW =
2^7

J* {xy)y-i ^P^ixyfy

where j8 and 7 are real constants.

With jS = i, 7 = 1,^ = 0, 9 = 1 and i, = i'/2, (1‘2) reduces to (M). Also,

under certain substitutions [91, the kernel of (1-2) yields, as particular cases,

various kernels, given by Watson [13], Bhatnagar [2], Narain { [6] and [7] } and

Everitt [5].

In (1*2), if fix) ^ g[x), then fix) will be said to be ‘self recipiocal’ i.e.

Riap ; bfj in the generalised Hankel transform (1*2).

The object of this paper is firstly to state some rules connecting different

classes of self-reciprocal functions in (1’2) and to use these rules in establishing

certain theorems which are useful in identifying the nature of resultant of tw^o

kernels as transforming a self- reciprocal function of known order into another of

a different order. Some of these types of kernels have been obtained by making

use of the theorems and various known and unknown results, which follow as

particular cases, have also been discussed.

, ap,.a„ . .
,-ap
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In the present discussion, for the sake of brevity, the notation of the t

has been used to stand for a set of parameters Am? > * . . , An*
^

2. Rule I ; If/(«) is R{ap ; bq) and belongs to A{a, a) [12, p. 252 § 9-7], then

g{x) = {I lx) f" Piylx)f{j) dy
J 0

is R[cp9
;

provided that

where X{s) is regular and satisfies the condition

X(.y) =
, s (T it

a < (T c I ^ a

X{s) = 0 \
e '

j

for every positive v and uniformly in any strip interior to (2-2) and c is any value
of or in (2-2)

^

In other words, P{x) is a kernel transforming an R(ap
;
b^) into an R{cp>i d^-).

Rule 11: Iff{x) is R{ap
;
b^) and belongs to A{ot, a) [12, p. 252 § 9-7j, then the

function

(2
-
1
)

in the strip

(2
-

2
)

and

(2-3)

g{x) a: f P(xy)f(j) dy
J 0

is R{cp> ;
dqi), provided that

(2-4) P(.)= 1

ATTtJ C-'icp

V
TT r
i=i 4v

+®-'‘+ ~2y
) ki

^

+dtA ~
47 ^ 27

,X{s)x-sds,

t^e^fcLeli^af'f
' conditions (2*1) and (2-3). Since the result is symmetrical,the hernel (2 4) also effects the converse transformation.

and
transforming an

;
b,) into an R{ep.; d,^)

nronf<?n^f^tif
the above rules can be developed on the same lines as in the

P ol the corresponding theorems of tlie Hankel transform [12, pp. 268-270],
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3. Theorem 1 : The resultant

K{x) = I
PiU) dy,

of the kernels of the form :

(3-2)
1

,«<. +Tv j 4y +'‘1-2,
)

lop p ^j2y-\r \ T\ /’i ^/2y + l

4y " 2f

. X(j) x~^ ds

9 ^/2y-l
, 1 ,

^ ^ ^

(5'5) '’•W=2Ji A,. »'""-V/2y-I . *
,

J

Vjj

where 0 < c < 1 ,
0 < <?' < 1 and

X(r) = X(l-i) ; “W =

is a kernel transforming an R{cf ;
dq

)
into an R{cc^

; ;8g^ ) and vice-versa.

P,o«/: Putting for in (3-1) from (3-3) and then changing the order of

Integra tiorij the resultant kernel becomes as

(3-5) K{x) = ^
j, 2y-l r \ y( ..±

)- r(-^--ci+2-) 4T "^+2y;

Hi) X-® ds X® Pi(>) ‘O'-

The value ofj-integral in (3-5) ean easily be deduced from (3-2) by using

Mellin’s inversion formula and therefore substituting it in (3-5), we get

I
Ac'+t* ^ — - — qIs) ds

lA4r-‘'+5?j,'.'l 21’
' + 2y;
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where

e{s}

2y- 1

"iy

p
IT

J=^l

s \ P „f2y-¥ 1 i

2yjjZi' \ 4y 2y

)

)

®(^) X(l-i),

which clearly satisfies the functional equation

= s).

Hence by virtue of Rule II, given in section 2, it is obvious from the form

• of (3-6) that’r(x), defined by (3-1), is a kernel which transforms an R[ap^
; j

into an ;
dq

)
and vice-versa. ^ ^

2

It only remains to justify the change in the order of integration in (3-5)

.

Now, putting s = and using

I r(.4 + J itiy)
i

t\
,
as

I

i
I

CO

in the integrand of (3‘6), we see that its modulus is less than a constant multiple of

(3-7) (iSV x)-«' (7+?s-i>-A) M i,

, ,

f + I + S + ? iSy

J -OP e

2
1

+ (
1

+ if)
1 f'liy) \r°' dy.

The change of the order of integration will be permissible if both thej and

t- integrals in {3'7) exist. These will exist if both the functions and

belong to A[oty a) [12, p. 252 § 9-7]

Now, the modulus of the integrand of (3*3) is less than a constant multiple of

f -tr

P ^
-{oL-V-

1 0 l) M 1

^ ^ ^

. Ml' '

^2

+ 5; /3y +
1

+ Pi)}

since

00(^7' = 0 y e

TT

pTy {q + q2- P - Pi- ^ ^

for every positive v and uniformly in any strip interior to a < <r < 1 - <z, where c

is any value of o- in this strip. Thus the integral converges uniformly in any

domain of x interior to the angle a and in any smaller angle it is 0(
|

x
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Since c' can be taken as near to (l-a) or a as we please, P2W belongs to A(a, a).

Similarly, Pi{x) can be shown to belong to ^(a, a).

This completes the proof of the theorem 1.

3-1. Corollaries : (i) With 13 = ^, V — h Pi Pa = P = == = 9 ~

= k'-m' ~ i- v/2, = v/2, b.^ == '/2 + 2m', Cj = A - m - | - p /2, = ixj2,

== ,,/2 + 2m, «! = / - n - i - P/2, = P/2 and = P/2 + 2«, the above

theorem reduces to a result, given by Saxena [10, p. 88] for Xy,h)m~ transform.

(u) On having 7 = I, Pi = Pa = P = 9i = *1 = *'/2.

dj = p/2 and /fj = P/2, the theorem yields a known result due to Agrawal

, [1, p. 305], in the Hankel transform.

3-2,

(3-8)

Example : Let us choose the kernels [1 1]

P,{;e) = x^-^ G
q-^r, qy->rr

r ay 1

[_

^
l^s»

~
> l''?! J

’

^ ^ 4- /'i +

iA'hich transQ^rms an R[ap
;
bq) into an R{cp ;

dq)^

+ ^2+^1t, t r f i^sj " i^p} po "]

< 2^ + /? + A < -f $ + ^29

transforming &a R{ap ;
bq) into an R(:/p^; Sq )

3-nd vtce versa.

Substituting these kernels in (3-1), replacing/'*' hyy and then evaluating the

integral thus obtained with the help of a known result [4, p. 422(14)], we get the

resultant kernel

q + Qidr q-adrid-r, q-kt+r

(3-8) Kix) = l{\ly) x'/-i G
p+p^+p2-^q+s3-k, p+q-iqid-qa+s+b:

/ >~i<^rn^q.2>i5q2>~i‘’e>~r-i-i'^kn‘^p ]
as a kernel transforming an R{cp

;
dq

)
into an R[yp ; Sg )

and vice-versa, provided

11 2 3

that 1<?, d-r</!- 4 ?i+i</'i-l? + *<?4 ?i + 93 + ^ -Pa>

q-^ q^+4r > p + Pi d- 2r,0 4 2t < +/>, + 2r < 9 + ?i +

k(P + Pi d- q - qi) - ^ + k < q + r pi 4- q + liP + P2 + 9-2 + 9) + -^ *

9 + 92 + < < ? + ?2 + ?.
1

arg /
3 -

|
< [H9 ^ qa - P - P-^ + .

Re{mj + nh) > -
1, (j = L , q + r ;

k 1, • • • ' ' ’
’ ^

^
,

where mj=bj (/ = 1
,

. . . . , 9), Wg+y = - <rj- (J = 1, . .
. ,

r)> i^h— h. { ’
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inq+% = Sft (A = 1, • • • >
- Ph{h - !>•••.,<) and Re[rj + < 1

(;• = 1 ,
. . , 3 , + »; A = 1 , . . .

, 0 where r,- = - dj [j ^
, ^

(j = 1, . . j
r), = p/j (A = 1, . . j 1).

3-2-1. Particular cases : (:) In (3-8), taking /3 = ^, V = 1, pi = p.^ ~ p =.

= g = 2, T = Q, t == 0, s = 0, A= 0
, Ai = v/2

, A2
= 0

, ^ 1
=0

, Cj =

= (i/2
, ^^2 = "

1
" 7j=/-n-^ - P/2 , 8 i

= P/2 , §2 = 2n -J- p/2 and using

the identity [3, p. 109(7)] we arrive at a known kernel [10, p. 94], transforming

an Rn{k, m) into an Rp{}, n) and vice versa.

(h) In (3-8), putting H = h "y = ». A = A = 1. 9i = Sa = ? = 2, r = 0,

f = 0, f = 0, A = 0, Aj == - 1, fli = 0, Pj = A - w - I - m/2, rii=M/2, = 2m-\-pl2,

7 ^
= /-n-J- p/2, 8 i

= P/2, 82 = 2n + p/2 and applying the identities [3, p. 209(7)

and p. 215(2)] we get a kernel transforming an Rij,{k, m) into an Rp{l, n) and

vice-versa.

{Hi) With iS = i V = 1, A = = ^2 = ^=0, /=0,

k =: 0, bi
— ^ di = /a/2

,
and 8i (3

’

8
)

yields a known kernel
[8 , p, 59]

which transforms an Ry, into an Rp.

(iy) Similarly, setting the parameters suitably in (3*8), it is easy to deduce

the kernels due to Narain [8 , p. 60] and Saxena [10, p. 94] transforming an Ry

into an and an Ry into an Rp respectively.

4. Theorem 2 : The resultant

14
-
1
) K{x)^ r P,{xy)P.^y)dy,

J 0

of the two kernels of the form :

c-'ilb

iiV
;=i V 4y

+ A7 + 2
-

^ rTT I

i=l

27-1

4y
+ 7

and

PsW =
1 fCHloo

27rtJ C "1^

where 0<c<l, 0<p'<l and X{s) = X(l-^)
;

(ts(s) = a)(l-j), is a kernel

transforming an R[ Cp
;
dg

) into an R{ Up
j p ).11 2 2
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Its proof follows, if we proceed on similar lines as those of theorem 1

4-1. Corollaries : (t) Having ^ 7 = 1, = I, = 92 = ? =2,

aj = 6j, = /</2, b.^ = 2m'H m/2, = >'/2, ^/2 = 2m+vj2,

= I - n - I - Xl'2, Pi = A/2, and ,82 = 2« -h A/2, the above theorem reduces to

a result, given by Saxena [10, p. 95].

(it) With (8 = i, O' = 1, />! = /la = /I = 0, = 92 = 9 = 1. ^ = ^*/2, dj, == v/2

and j8i
= A/2, the theorem yields a known result due to Agrawal [1, p. 308],

4
-2 . Example : Let us have the kernels [11

J

+ + r
]

2r<

+ L 1^2) ]'

transforming an 5
an I )

and vice-versa
;

and

r
1

1

2

L
i

1

l^g
2

, 2^<2j+j&+/2<^^+^ + ^2>

versa.transforming an ^ j)
into an and r;zV^-

Substituting in (4'1), replacing hy y and then evaluating the integral thus

obtained with the help of the known result [4, p. 422(14)J we get the resultant

kernel

' 27^*“^ p-\-pi-{‘q'\'q2~\'^~\'S^p i- p2'\-q^(ii-^

\ X
^ J

*

1

transforming an ;
dq

)
into an R{yp ; hq ),

provided that
i 1 2 ‘-i

5 <H <Pi- Pi+g+?ih^> 0^2r < 2/: 4 p-Vp, < 4r4^i 4 2^ < 2,r 4^+^

< 4^ 4 ^ 4 Up 4 J&2 + ^ 4 ^ ^ + ?2 + ^ ^ ^ J(^ + A
4 ^ 4 ^i) 4 ^ ^ ^ “h ?i ”h ^ ^ ^ 4 ^3 4 I ^ “h *"/ -^ 1 /

4 2r - A:] ;
/?(my n^) > - I {j

—
1 > • • • , ^ 4 ^2 + if

;
^ == i> • * • > ? +

where = ^^-
(j = 1 ,

, . , g), =8j (j = 1, . . , q^j), mq+q+j = - P/ 0’=

nj^z=zbji
( J = 1 5 • • • ) ?))

= tif/j (A = I5 • • • } ?i)> 4 Jt
0-^ (A — 1, . • . 3 5

4 ^h) ^ (j ~ l> • * • yt \
h -= I, . . • 3

r)

and 2 Re Pj - i Re aj - 2^ Re 7; - S «« bj - 1 Re Sj + 2 Re Pi+ K9493-/’-^i+n
1 1 1 1 1 ^

>(9 + 92 “/'a)' (i
= ^. • • • >

’)•

4-2-1. Particular cases : (i) In (4'2), setting ^ = S 7 = 1, = /'s = ^ = ^>

= 92=9 = 2 ,
r = 0

,
/ = 0 , i = 0

,
k = 0 , ii > m; 2 , 62 = 0 .

= 0
,
r,=k-m-|-i72 ,
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= v/2, d., = 2m + i'/2, y^ = I - n - k
- X/2, Si = X/2, 82 = 2n + ,\,/2 and using

a known’identity [3, p. 209(7)], we get a known kernel lIO, p. 98] transforming an

R^[k,'m) into an n).

[ii) In (4-2), putting ^ y = l,p^ = Pz = P qi = q.j, = q = 1,1 = 1
,

j = 2, / = 0 ,
A = 0

,
= 0

, Cl = 0
, Ti 0

, 61 = f*/2, \ i'/2, Sj = 1./2,

Pi = - v/2, P2 = 1 + vjq, we obtain a kernel [
1

, p. 309] transforming an to

an Ry
(Hi) In, (4-2), having P = h y = \, Pi = p-i - p = Q, ?i = $2 = ? = 1,

r = 0
,

1 = 0 , J = 0
, A; = 0, Pi = 0, Cl = 0, 7i - 0 and either {b^ = p/2, Sj = v/2,

(fj
= v/2) or (*1 = ''/2, 81 = /'/S, ij = p/2), we arrive at the kernel [ 1

, p. 310]

transforming an Ry or an into itself respectively.

5. Theorem 3 : The resultant

(5-1) = f Pi[y) P-A^y) dy,
J 0

of the two kernels of the form :

and

irT
cf-i^ i=5i1

PA>f) =
2'^z

'

J c -ICD P

, a ,
'^%V2y+i ^ \

4v 2yj ]Li \ 4y 27 )

rrT

J=^

27-1 S

. ds,

27/j=:1 V

where 0 <r<l, 0<t'<l and X(^) = X(1 - w(,y) = (o(l - i), is a kernel

transforming an R[cp
;
dq

)
into an R[ap

I ftq )•11 22
The proof of this theorem can be developed on the similar lines as those of

the theorem 1.

5T. Corollaries
: {i) Setting 7 = 1, = A = = §'2 = ^ = 2,

= A' m’ - J
- 1/ 72 , b, - v72, == 2m' 4- V 12, c, = I - n i

- - m72,

d^ = 2n + p'l2, 01
^
= ^ - p/2, = P/2, and = 2m 4 p/2, the above

theorem reduces to a result, given by Saxena [10, p. 99].

{ii) With /5 - J, 7 = 1, = 0
,

z=z q ^ b^ = v72,

^1-^72 iSj = p/2, the theorem yields a known result due to Agarwal [l,p«309].

(
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5
*

2 . Example : Let us choose the kernels [ 1 )].

q, + r

pL^rq'i’^

i l^q 5 i^k> ” i^p

“
i^Ios

, q+qi+ir>p+p^^ 2k>lr,

transfomiing an R[ap
;
bq) into an R[c^

;
dq

) ;

and

q+l, q>A^

/'+^72+*S />2 + ^ + ‘^

j 1^8? “ i^p

i^2> - if‘s, -lyp
’ ?-f?a+4f>/>-t-^2+2i>2<,

2

transforming an R{ap
;

bq) into an
5 8g^

).

Putting these in
(
5 -! ), replacing yy hy

y

and then evaluating the integral

thus obtained with the help of the known result [4, p. 422 ( 14)] we obtain the

resultant kernel

(5-2)

y.} fZ+Ji +r+/, 9+jj+ r + J

m= o- c
' ^+/ii+9+ya+Kf /'t/'2+9 + ?i+ A+ i

x^y
ibqi i’^r>

~
iSj^ , ~ i^p

» “ i”’r> i^q> ~ i^s> j ~ r+i'Tij

as transforming an R{cp
;
dq

)
into an E{yp

; Sq ), provided that

+ 9i”?2 +/’2+^5

g.^ s, 2r < j
6 -f /i + < j 4" ?i d- 4r, 2 ^ < /> + A + 2 r < 5 + ?2 ri" 4/,

s (/> + Pi + ? - 9i) + -t - r < ? + r < Pi d- 9 + k, i(p -f P2 d- 9 92) d- ^ i

< 9 + i < j!)2 4- 9 + i

arg it'k
I
< [ J(^ 4. ^ 2 / - f 1 TT

;
Re{mj + n;,)

> -
1 (j = 1, . . . . , 9 d- f ; A = 9 d- 0 where nij = bj {j = 1,

, 9),

niq^} — ~ *rj (j = 1) • • • j
r)j nji = b}), (h = 1, . . . , 9), fiq+ji = ~ (A = 1, . . , /) j

+ ^/i) < Mj = , 9i d- r ; A = 1
, . . . . , 92 + t) where rj = - dj

{j
— Ij • • • ) 9 i) +J ~ ij ~ ^ > • • • > ^) >

— ~ Sh {b ~ ^> • • • > 92)* +h ~ Ph
l 2

(A = I, . . . ,
i).

5'2'1. Particular cases : (i) In (
5 -2 ), having R =• i, 7 = 1

, pi = P2 = p = 0,

9j = 92 = 9 = 1
,
r = 1, A = 2, ^ = 0, r = 0, ^ 0, Cj = 0, Vj =r. 0, Aj = /i/2,

dj = 1 4- v/2, Si = i'/2, o-j = - v/2, and 0-2 = 1 4-
' /2, we again get the kernel

given by Agrawal [], p. 309j, transforming an Rt/i-2 itito an Ry.

(it) Similarly, by setting the parameters suitably, the kernel due to Agrawal

[t, p, 310], transforming an Ry or an Rp into itself, can easily be deduced as

particular cases of
(
5 '2).
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Abstract

The generalized functioh method is utilized in solving an initial value

problem of water waves generated in an inviscid, incompressible and homogeneous

ocean by a harmonically oscillating pressure distribution acting on its free surface.

It is substantiated that this new approach to the theory of water waves is very

simple, rigorous and useful from the point of view of sufficient generality and appli-

cability. An asymptotic analysis is carried out for finding both the steady state

and transient solutions of the problem. A discussion of the waves motions is made
with a special reference to their charecteristic features and the effects of surface

tension on the wave phenomena.

1, Introduction

Water wave phenomena have received a great deal of attention by Stoker (1),

Miles (2), Debnath (3-5), Debnath and Rosenblat (6), Lamb (7-8), Sen (9) and

many others. Several classical methods have so far been employed in studying

the linearized theory of wave motions in an inviscid, incompressible homogeneous

fluid with a free surface due to local disturbances acting on and below the free

surface of the fluid. An extensive use of classical Fourier series and transform

techniques in these problems are well known and readily available in the existing

literature (Wehausen and Laitone (10), Lamb (8), and Stoker (1) )
on the subject.

In recent years, the author (3-5) has clearly pointed out certain inherent

difficulties involved in the steady state water wave problems and^ ihe classical

Fourier analysis used in solving them. These difficulties are essentially related

to the existence, uniqueness and the real singularities of the inversion Fourier

integral representation of the solution. In order to resolve these difficulties,

Debnath (3) alone and in collaboration with Rosenblat (6) have investigated the

steady state and the transient problem of water wave phenomena due to a harmo-

nically oscillating pressure distribution of quite general character. 1 his new

treatment enables them to derive a mathematically unique and physically realistic

solution in a simple, straightforward and elegant manner.

It thus appears that the water wave problems in various situati^s are readily

and rigorously accessible to the generalized function treatment. Ihisapproaci

can not only eliminate the deficiencies of the classical Fourier transform analysis,

but also give the solution of physical interest. Thus it seems to be extremely

useful device from the point of view of sufficient generality and applicability.

Another convincing point about this method is that there is neither any nee or

modification of the basic flow equations nor any justification of the limit opera ion

suggested by Lamb and Sen.

[
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This paper is devoted to study of water waves produced in an inviscid
incompressible, homogeneous deep ocean by a harmonically oscillating pressure
distribution of general nature ^‘switched on’’ at time ^ 0 + . The aim of this

work is two-fold. In the first place, the study provides an interesting and useful
application of the generalized lunctions to the water wave problems. Secondly, a
unique solution of physical interest is obtained rigorously without any help of a
radiation condition or an equivalent device. An asymptotic analysis is carried
out to investigate the steady state and the transient solutions. A discussion of the
wave motions is made with a special reference to their characteristic features and
the effects of surface tension on the wave phenomena. Some consequences land
implications of the results are presented.

2. Statement of the initial value problem

We consider a linearized two-dimensional transient wave motion of an
inviscid, incompressible, homogeneous fluid of infinite depth. We take the origin

of the rectangular cartesian coordinates (x,y, z) on the free surface of the fluid of

uniform density P and surface tension T. In the undisturbed state, x -y plane is

asstimed to be horizontal free surface and ^-axis vertical positive upwards.

The unsteady wave motion is. set up on the free surface of the fluid by an
oscillating periodic pressure of fixed frequency in the form

p{x, i) = P P{x) -a^x^a
= 0 ,

outside

on the undisturbed free surface ^ = 0 of the fluid, where P is a constant, p{x) is

any arbitrary function of x and H{t) is the Heaviside unit step function of time t.

In view of the fact that the flow is irrotational, there exists a wave potential

<l>{x^ Z I
t) which is governed by the Laplace equation

<
1̂ x0̂ + <hz, - CO <^<0, - co<;v< CO, (2-2)

where suflSxes stand for the partial differentiation.

The linearized dynamic and kinematic free surface conditions are given by

“f-
^ ^

^ = 0, / > 0, (2 3)

'nt = z — > 0, (2*4)

where ^ ==
/) denotes the vertical surface elevation and g is the gravitational

acceleration.

The bottom boundary condition is given by

0 sls z 00
, / > 0, (2*3)

The initial conditions are

<t^{x^ Z) 0
)

v{x^ 0
)
- 0

[
(.r, 0 ; i)

^
p{x, 0)

(2'6 a, b)
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In addition, we shall treat i>{x, z j i) and ‘>i{x, t) as generalized functions
of a; in the sense of Lighthill (1!) so that their Fourier transform exists with
respect to x.

3. Integral solutions

It is convenient to use the joint Laplace and the generalized Fourier trans*

formations defined by the integral

= <l> (k, z I
s) = —^ I

dk I ^(x, z\t) dl
y"27r J -00 Jo

(3-1)

The joint transform enables us to simplify the equations (2*2) - (2 ’5) and it

turns out that the solution for the transform functions is

^ ;
s)

Pp[k)s d
k\z

P {s ~ ia>) +

S -
^ “

p(r - t'u)

(3-2)

(3-3)

where a.^ ~ a-(A) = (g + — ^s)
j
k 1, (3'4)

The inversion theorem of the Laplace and the Fourier transform together
with the Fultung theorem of the former yields

p
<p{Xj ^ j at -- cc sin ctt

PY'Ztt j -06

. mL h (k)
i(^ e

)

\k

i - co'’)

. dk, (3 5)

~ py^/ ! I 1^) at - 10)

Usually these integrals can not be evaluated
to asymptotic techniques.

, ioiL fiihx
sm 0,1 ^ae

) ,
.. dk

, (3-6)

exactly and it is necessary to resort

4. Asymptotic analysis

It would be sufficient for the examination of the transient wave motions to
evaluate either the integral (3*5) or (3*6). We next turn our attention to the
evaluation (3’6) by using formulae for the asymptotic development of the genera-
hzed Fourier transform due to Lighthill (11) and Jones (12). In order to facilitate
ne analysis, it is convenient to set T = 0 in (3‘6) and to include a discussion
about tlie effects of surface tension on the wave motions in a subsequent section.

Integral (3‘6) can be written as

^{x, t) =
P

2gP y2ir
(T - 5) , (4-1)
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where S and T represent the steady state and the transient wave integrals resnec
tively and are given by

"

S = e^ ^
f

o!{k) p (k) p -—) ^
J -00

^ a -coy ’

r- / m{4^+ ~) ‘'“’dt.

(4-2)

(4-3)

where a is given by (3M) with T = 0.

It may be noted that the significant contributions to the steady state integral

CO, come from the poles of the integrand of (4*2), that is, from the

points where a ± w = 0. In fact, the poles are at A: = ± , We evaluate tS by
using the result (11, pages 43 and 52) and it turns out that af

j
jc

)

•-» co

^
X . oi-je

S ~ 7,i sgn X 1 - e~* T
] 0 ’ (4'4)

with p (k) p [
k) which corresponds to some simple cases of physical interest.

However, this even-character of/, {k) is not necessary in a general situation.

The method of stationary phase (Jone, 12) in conjunction with the result

stated above can be used for the asymptotic evaluation of (4-3) for large It is

then necessary to locate the stationary points of (4-3) which are roots of equation
—= ± J

and A = ± Aj with k^ = . Thus the transient contribution to (4'3)

is obtained in the form

a{k^) p (
27r

)

(
t

I 1 ^

ip i {a (AJj) / + X + —

}

o(^j) +

i {t €t[k^ - k^x

a[k^ - CO
(4-5)

It. remains to calculate the contribution to T from its polar singularities

which are the same as those of S. To evaluate the polar contribution to T,

we write
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{4-7)Tpolar

where and are given by

a[k)p[k)

a -jp- 6)
^

J(k) /' </<:

<a? — CO

(4 8)

(4-9)

It may be noted that T-^ has no poles in the range of integration and hence

contributes nothing. On the other hand, has two poles at A = ± f — and the

residue-contribution can easily be obtained. Making reference to the technique

developed by Debnath and Rosenblat (6) together with a change of variable k to

a(A), it turns out that

polar ^ TT i e
is)t

2

s' +
. Ol)

I - X

(4-10)

for large t > 0. .The multiplicative factor sgnl is omitted since t > 0 is the

interest.

The asymptotic solution for the veritical surface elevation v{x, t) is obtained

in the form

v[x, 0

2P i osV p ^ ^ ^ ^

P ^2it

(4-11)

Remark ; Solution (4-1 1)
breaks down at gt =

critical point. A special device advanced by

find a solution valid at the critical pomt.

interest, no attention is given to this point.

2*00 which may be regarded as the

Debnath (13) may be employed to

As the solution for large t is of most

5 Some pressure distribution of physical interest

The entire analysis has been carried out for an arbitrary function /(*)

• 1 i;nn f9- n It would be sufficient for the investigation of the dominant

S^rL of the unsteady wave motions to take some simple form of M^). such as.

(a) p{x) (a^ - x'^-K [b] p{x) ==

1
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{c) p{x) = 1, id) p{x) = d and

(«) P{x) = sW.

where is the Dirac function of distribution.

The corresponding Fourier transform p{k) of these cases {a) - {e) are respec-
tively given by

= Jj /oW,

w J1^
(e) -4r-

The asymptotic solution for v

(b) p{k)^
J c

(d) e
, Im- = -|-

j
and

{x, t) associated with case {d) has the form

f){x, t) * 1 )

pg-i

+
'• (S )‘[ [£ - (€ - :-)+

]
<=)

2 ^2 P ^ A'V-

ixca j

This solution clearly suggests that its transient component decays to zero
^ for fixed x. Consequently, an ultimate steady state is

established in the limit. An exactly same conclusion can be drawn in all other
^*^^^^t>utions confined over a finite region of the free surface. The nature

01 (5*J) in non-dimensional form at fixed time l* = 257r is exhibited by Figure 1.

The non-dimensional quantities a*, it* are defined by v* ~ 'T)

^
z==z co^and

A.

The asymptotic solution for v{x^ t) related to case (e) has the representation

V{x, i) _ ^4'
Pg^

p
+ —-

—

Jxl i

^ si' If ^ /

^
4
-_

-j + ,sm(
f IT

.4a 4 / _

4 ^/' TT p <ii

Lv 2x«>J J

(5-2)

It may be observed that this result follows fiom that of case [c) as a limit
^ c® ^ 0 provided 2Pa tends or a finite constant.
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6, Cooclusions

It may be inferred from the above asymptotic solution that the ultimate

steady state is attained in the limit t -» co for fixed x. The steady state solution

for the surface elevation vix, t) has the form

PtV - f a,2\
»' r i

*
' ^

f) ^\g)
" (6

-

1
)

This solution represents progressive surface waves propagating with the phase

velocity - and the group velocity ,
and the amplitude of the waves is constant.

This analysis shows that the present method of solution provides an inter-

esting example of the application of generalized function method in the theory of

water waves. Furthermore, a comparison of this method with the classical

methods suggests that the use of generalized functions simplifies the analysis con-

siderably.

7. Effects of surface tension

It has already been seen that surface tension enters into the water wave

phenomena through equation (2*3), Consequenily, the polar singularities of the

wave integrals are at the points where

I

A:
1

= 0, (7-1)

Naturally, the stationary points related to the transient integrals suffer from

a change due to inclusion of surface tension.

Without entering into mathematical details, it may be noted that real roots

of (7*1) and the stationary points associated with the transient integrals are

given by

where surface tension T is very small.

Some conclusion can now be drawn concerning the role of surface tension. In

the first place, both the steady state and the transient solutions are in epen en y

modified by the surface tension. The phase and the group velocities are an

respectively and evidently are greater than those of the corresponding results

obtained without including the effects of surface tension. Secondly,

interest to point out that the transient solution related to case 5(^) is j

hence tends to zero as i od for fixed x, Consequenily, the ultimate stea y s a

is reached in the limit. Like viscosity, surface tension is really responsible r

attainment of the steady state.
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Physically, the principal effects of surface tension is to increase the velocity

of energy propagation and makes the energy more readily distributed among the

rapidly travelling waves. It is thus highly likely that the intense accumulations

of energy are no longer possible in the far field as / oc* This is one of the most
significant contrasts with the corresponding problem which takes on account ol

surface tension.

8,

Concluding remarks

It appears from the above analysis that wave phenomena in fluids and elastic

solids in various situations can readily and rigorously be investigated with the aid

of the generalized function treatment. It may be interesting to analyze the above
problem in a more general geometric configuration. Such study will be consi-

dered in a subsequent paper.
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Abstract

The product fCflH7NBr2 ) of the reaction between bromine and quinoline has
been isolated and analysed for available bromine.

Calculated for : Cj^H^NBr^ : Br, 55*30%
Found : Br, 55*00%

The rate equation has been derived as

dt k>3 -f ka [<^ui

Where k.^, and k^ are the velocity constant of the different steps of the
reaction.

Introduction

In this paper we have studied the nature of the reaction mechanism and the
product formed, when bromine and quinoline react in carbon tetra-chloride solu-
tion. The experimental part has been published in the Indian T. of Chemistry in
1968, Vol. 6, No. 6, pp. 306-308.

The exact nature of the reaction product when bromine reacts with quinolinem carbontetra-chloride, at ordinary temperature has been discussed by Eisch^^
and the structure formula which has been ascribed to this addition product is as
follows :

N

BrS+
m

Br8-

(quinoline di-bromide)
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The reaction between bromine and quinoline is very fast and when the con-
centration of quinoline is comparable to that of bromine [i.e. for initial [bromine!
= 15 52 [quinoline] == 67*58 x 33-78 x and 16*89xlO*^M
respectively) the total order of the reaction is three -two with respect to quino-
line and one with respect to bromine. When the reaction is studied in the
presence of excess of quinoline, {i,e. for initial [bromine] = 15-52 X
[quinoline] 8-41 X 12‘62 X 16*83 x 10*--M and 50*50 x lO’^M
respectively and for initial [quinoline] = 42*08 X lO-^M, [bromine] = 27*16

X I0-3M, 23-28 X 13*58 x iO-^M and ll*64 x iO-^M respectively) the
reaction becomes very fast and also, rapid precipitation of quinoline di-bromide
occurs. Under such conditions the reaction becomes second order—one with
respect to each of the reactants.

Study of the Reaction Product

By equivalent method it is found that number of moles of bromine required
by one mole of quinoline is one. Also the orange precipitate of the reaction
product was collected, washed with fresh carbon-tetrachloride and dried in a
desiccator over a mixture of KOH pellets and paraffin shavings. After the orange
solid was dried in the dark, it was analysed for ^^available bromine’’. The prepar-
ed samples were treated with 15 ml. of 407o KI Solution and 15 ml. of 5 N acetic

acid and the liberated iodine was titrated with standard sodium thiosulphate
solution.

Calculated for : C9H7NBro : Br, 55*30%

Found : Br
;
55*0%

The orange adduct melted at 81-82^^0. Treatment with sodium sulphite

and ammonia solution regenerated quinoline. Upon standing in air, it slowly lost

bromine vapour and developed yellow flakes.

Mechanism

We propose the following steps during the reaction between bromine and
quinoline in carbon-tetrachloride solution.

Qu. + Br2 ^ Qu . . . . Brg* (I)

k-i

^2
Qu...Br2

* + Qu.^2Qu. Br (2)

ks

Qu. Br + Bfg Qu. Br3 + Br (3)

Br + Br Br^ (4)

The compound Qr . . . . Br2
* may be regarded as activated complex in

which the atoms have not, yet, been organized into a normal molecule, obviously

the rate of variation of concentration is given by the expression.

- ki [Qu] [Br,l + ks [Br^] [Qu Br] - k., [Qu . . Br^*] (5)

From principle of stationary state we have :

_
• ^*'1-1= kj [Qu] [Br2] - fc., [Qu . . . Br,*] -k, [Qu . . Br,*] [Qu] = 0
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or
(
6

)

and

[Qu . . . Br/] K [Qu] [Br,]

k-i + [Qu]-

d [Q,u Er]

dt
= k, [Qu . . . Br^*] [Qu] - k3 [Qu Br] [BrJ = 0

or [Qu Br] = ko [Qu . . . Br^*] [Qu]

ks [Bro]

Frona Equs. (5), (6) and (7), we have

dt k.j + k, [Qu]

(
7
)

(
8

)

The reaction has been studied at the very low concentration of bromine (i »
15-52 X10-3M) and hence if the [Qu] = [BrJ or the concentration of quinoline
is slightly greater than the concentration of bromine, the values of k., [Qu] and k
in the denominator of equ. 8. Gan be neglected as the values are negligible and
equ : (8) behaves as a third order expression—two with respect to quinoline and
one with respect to bromine. When the concentration of quinoline is very laige
as compared to bromine so that k^ [Qu] > > k.j. The value of k.j in denominator
of equ. 8. Can be neglected, as it is negligible and the equ. (8). Can be written
in the form*

_ dJB^j _ 2kik2[Qu]- [BrJ
dt hJW]

or - = 21q [Qu] [BrJ (Iq)

which is a second order expression, one with respect of each of the reactants.

Acknowledgement

y. N. P. S. wishes to thank the University Grants Commission, India for
providing financial assistance.

References

1. Eisch,J.J. /. Org. Chem.,21, 1318, 1962.
2, John. J. Eisch and Bruno. J. Org. Chem., 28, 2865, 1963.

f 442 ]



Proc, Nat. Acad, Sci., India, 40(A), IV, 1970

Effect of algae and phosphorus on the formation
of aminoacids

By

N. R. DHAR and S. K. ARORA*

University of Allahabad, Allahabad

[Received on 3rd July, 1968]

Abstract
Blue green algae Anabaena and Tolypothrix fix atmospheric nitrogen, along

with carbon saving. The efficiency of niirogen fixation by algae is more when the

systems are phosphated with TATA or GERMAN basic slag. The amount and
number of aminoacids is more in the systems which ate inoculated with algae,

more in light than in the dark.

Introduction
Since the discovery of phosphorus by Brandt^ in 1969 has lead the scientist

to make intensive studies, because of the unique and paramount importance of

this element and its compounds to agriculture, biochemical processes and industry.

As in all living organisms, compounds containing phosphorus play important

roles in nearly all phases of metabolism particularly in energy transformation

reactions Krauss^ has emphasised the need of phosphorus for the optimum growth of

algae. Free amino acids are rapidly degraded in soil their amount, however, may
quickly increase after available carbohydrates and inorganic nitrogen have been

supplied. According to several workers-*^ the turnover of protein in soil depends on

the nature of the organic matter being degraded and the environmentdl conditions.

Bremner^ found however that organic matter tended to attain a constant protein

and aminoacids composition. According to Watanabe®, Fowden^ and Williams

and Burris^, aminoacids like aspartic, glutamic acid, alanine, glycine, valine

serine and phenyl alanine are present in all the blue green algae. Dhar and Roy®

have also shown the formation of aminoacids by exposing normal solution of

nitrate and glucose with titania. Simonart and Peeters^® studied the aminoacids

of forest soils, leaf moulds and green house soil and reported that aspartic acid,

glutamic acid, serine and alanine .occured in all samples. Recently Payne et

noted that aqueous soil extract concentrated by freeze drying yielded ninhydrin

positive spots on paper.

In the present investigation the role of algae and phosphorus on the forma-

tion of amino acids in soil has been studied.

Experimental
. . • j*

The experiments were carried out with the Institute soil. All the ingredients

viz • soil, phosphates (Tata or German Basic Slag) and carbonaceous material

(wheat straw) used in these experiments were sieved to 100 mesh, 200 gms ol sod

were laken in enamelled dishes. To this the required carbonaceous materials and

phosphates were introduced as 1% carbon and 0’57o F2O 5
respectively on an oven

dr y basis and the contents were thoroughly mixed in a big pestle and mortar and

* Present Address ; Punjab Agricultural University, Hissar, India.
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the whole mixture was ruade as uniform as possible. Then wherever requir j
the soil was inoculated with algae i. e. Chlorella vulgaris, Anabaena naviculoirf
and Tolypothrix tenuis. Two similar sets were arranged side by side, one
which was exposed to light under an electric bulb and the other was covered with
a thick black cloth. In all the dishes the moisture content was maintained at 400'
level throughout the experiment and the contents were stirred daily. At regul

*

intervals of time, composite samples were taken and were analysed for total carbon*^
total nitrogen, available P.jOg and aminoacids. The quantitative estimation of
aminoacids was made by Harding and McleaiP* procedure and qualitative
detection by two dimensional paper chromatography. Bacteria free unialgal
cultures of the above three algae were obtained from Dr. A. K, Mitra, an eminLt
algologist of the University of Allahabad.

The following abbreviations for the aminoacids studied have been used
A1 for alanine, Va for valine. Asp for aspartic acid, Leu for leucine, Gly for Glv'
cine, Glu for Glutamic acid, Ly for Lysine, Ar for Arginine and Hi for Histidine.^'

The experimental observation are recorded in the following pages.

Percentage analysis of the Ingredients

Soil l ata Basic German Basic
slag slag

Wheat straw

HCl insoluble 78-326 15-7485 11-3978 5-126
Sesquioxide 9-2478 — — 1-4154
FePs 4-167 15-4976 14*6893 0-6064
CaO 1-8765 38-6778 42*2897 0-8442
KoO 1-1537 0*6337 traces 0-8036
MgO 1-5198 4-8247 4-9-1-34 0*4078
Total Pp. 0-2108 7*468 17-2614 0-6038
Av. PoOk 0-0136 4-1024 9-8876
Total carbon 0-7126 38-276
Total nitrogen 0-0698 - 0-628

Table 1

200 gms Soil

Period of Total Total Aminoacids Amount of
exposure carbon nitrogen Efficiency identified aminoacids
in days gm. gm. chromatogra- with respect

phically to glycine

LIGHT
0 1-4252 0-1396 Al., Va., Glu.
60 1-3527 0-1405 12*4 ' Al., Va., Glu.

120 1-3218 0-1408 11*6 Al., Va., Glu., Ly. 0-0309
180 1-2757 0-1412 10*7 Al., Va., Gly., Ly., Ar. 0-0348
240 1-2042 0-1417 9-5 Al., Va., Glu., Ly., Ar. 0*0334

DARK
0 1-4252 0-13960 ... Al., Va., Glu.
60 1-3765 0-14000 8-2 Al,, Va., Glu.
120 1-3490 0-14021 8-0 Al., Va., Glu.
180 1-3186 0-14040 7-5 Al., Va., Glu. Ly. 0-0271
240 l-2t64 0-14060 Al., Va., Glu., Ly. 0-0276

[ 444 j



Table 2

200 gms Soil -f- Ghlorella vulgaris

Period of Total Total

exposure carbon nitrogen Eflticicncy

in days gm. gm.

Aminoacids
identified

chromaiogra-
phically

Amount of
aminoacids

with respect

to glycine

LIGHT
0 1*4252 0-1396 • * * Al.,Va., Glu.

60 1-3760 0-1406 20-3 ^i'a
Al,, Va.j Glu., Ly.

120 1*3512 0*1410 18-0
:

Pro., AL, Glu., Ly.
180 1-3142 0-1414 16-2 i AL, Va., Ly,, Glu.,

240 1*2778 0*1419 15*6 AL, Va., Glu., Asp,

DARK
0 1*4252 0-1396 • » . AL, Va., Glu.

60 1*3763 0-1400 8*1 AL, Va., Glu.

120 1*3489 0-1402 7-8 AL, Va., Glu., Ly.
180 1*3183 0-1404 7-4 AL, Va., Glu., Ly.
240 1-2963 0-1406 ... AL, Va., Glu., Ly.

0'0366

0*0361

0*0347

0-0272

0-0275

Table 3

200 gms Soil + Anabaena naviculoides

LIGHT
0 1*4252 0-1396 ... Al., Va., Glu.

60 1-3728 0-1411 28-6 Al., Va., Glu., Asp., Se. ...

120 1-3488 0-1416 26-1 Ah, Va., Glu., Asp., Ar., Se. 0-0332

180 1-3114 0-1422 22-9 Ah, Va., Glu., Asp., Ly., Ar. 0-0380

240 1-2771 0*1424 18-9 Ah, Va., Glu., Asp., Ar. 0*0363

DARK
0 1-4252 0-13960 • * * AL, Va., Glu. > . .

60 1-3761 0* 14u02 8*5 AL, Va., Glu. • ..

120 1-3490 0-14019 7-7 AL, Va., Glu. .. .

180 1*3179 0*14042 7*6 AL, Va., Glu., Ly. 0*0272

240 1*2856 0-14063 7-3 AL, Va., Glu., Ly., Asp. 0-0275

Table 4

200 gms Soil + Tolypothrix tenuis

LIGHT
0 1*4252 0*1396 ... al, Va,, Glu.

60 1*3736 0-1412 31-0 AL, Va,, Glu., Ly.,

120 1-3504 0-1417 28-0 AL, Va., Gly., Ly.,

180 1*3126 0-1423 23-0 AL, Va., Glu., Ly.,

24o 1-2776 0-1425 19-6 al, Va., Glu., Ly.

DARK
0 1*4252 0*13960 . * . AL, Va., Glu.

60 1*37 '>5 0-14003 8-4 AL, Va., Glu.

120 1-3490 0-14019 7-7 AL, Va., Glu., Ly.

180 1*3180 0-14042 7-6 AL, Va., Glu., Ly.

240 1*2854 0-14062 7-2 AL, Va., Glu., Asp

0*0382

0-0271

0-0275

\
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Table 5

200 gms Soil + 1% G as Wheat Straw

Period of

exposure

in days

Total
carbon
gm.

Total
nitrogen

gm.

Aminoacids
• identified

cxency
chromatogra-

phically

Amount of
aminoacids
with respect

to glycine

LIGHT
0 3-4252 0*1729 ... Al, Va., Glu. » «

•

60 3-0584 0-1833 28-3 Al, Va., Glu., Leu. 1-7946

120 2-8530 0*1887 27-6 Al, Va., Glu., Leu., Asp, 2-4632

180 2-6779 0-1935 27-5 A)., Va., Glu., Asp., Leu.,Ar. 2*7289

240 2-4709 0-1926 27-3 Al, Va., Glu., Asp. 2-6437

DARK
0 3*4252 0-1729 * • a Al, Va., Glu.

60 3*1404 0-1774 15-8 Al, Glu., Va. 1-0721

120 2-9837 0-1797 15-4 Al, Glu., Va., Leu. 1-4897

180 2-8139 0-1821 15-3 Al, Glu,, Va., Leu., Asp. 1-9817

240 2-6415 0-1818 * • Al, Va., Glu., Leu., Asp., Ar. 1*8763

Table 6

200 gms. Soil + 1% G as Wheat Straw + Ghlorella

LIGHT
0 3-4252 0-1729 » • « Al, Glu., Va.
60 3-1412 0-1835 37-3 Al, Va., Glu., Leu., Pro. I-82V5
120 2-9852 0-1891 36-5 Al, Glu., Va., Leu., Pro.,Asp. 2’4867
180 2-8074 0-1939 33-9 Al, Va., Glu., Leu., Pro., 2*7469

Asp., Ar,

240 2*6199 0-1923 32-7 Al, Va., Glu., Leu., Pro., 2-7231
Asp., Ar.

DARK
0 3-4252 0-1729 ... Ah, Glu., Va.
60 3-1405 0-1774 15-8 Ah, Glu., Va., Leu. 1-0722
120 2-9836 0-1797 14-4 AL, Va., Glu., Leu., AL, Asp. ] -4896
180 2-8140 0-1821 15-3 Al, Va., Glu., Leu., Asp., 1-9818
240 2*6414 0-1819 ... AL, Va., Glu., Leu., Asp.,Ar. 1 *8763

Table 7

200 gms. Soil + 1% G as Wheat Straw + Anabaena

LIGHT
0 3-4252 0-1729 ... AL, Va., Glu.
60 3-1385 0-1860 45-6 Al., Glu., Va., Se., Leu. 2-0678
120 2-9341 0-1923 43-9 AL, Glu., Va., Se., Leu. 2-7423
180 2-8063 0-1998 43-4 Al. Va., Glu., Se., Leu., Asp., 2-9537

240 2-6188 0-1986 42-2 AL, Va., Glu., Se„ Leu., Asp. 2-8234
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Period of

exposure

in days

Total Total

carbon nitrogen Efficiency

gm, gm.

Aminoacids
identified

chromatogra-
phically

Amount of

aminoacids
with respect

to glycine

DARK
0 3-4252 0-1729 • * . AL, Glu., Va. . , .

60 3-1403 0-1774 15-8 AL, Glu., Va., Leu. 1-0722

120 2-9838 0-1797 15-4 AL, Glu,, Va., Leu. 1-4895

180 2-8139 0-1821 15-3 AL, Glu., Va., Leu. 1-9820

240 2-6416 0-1819 ... AL, Glu., Va. 1-8759

Table 8

200 gms. Soil + 1% C as Wheat Straw + Tolypothrix

LIGHT

0 3*4252 0-1729 • • * al, Va., Glu. ...

60 3-1398 0-1867 48-3 Al., Glu., Va., Th. 2-3467

120 2-9845 0-1935 46 7 AL, Va., Glu., Asp., Th.,Leu. 2-9813

180 2-8069 0-2017 46-5 AL, Va., Glu., Asp., Leu.,Th. 3-1294

240 2-6196 0-2008 • • V AL, Va., Glu., Th., Asp., Ly., 2-9672

Ar.

DARK
0 3-4252 0-1729 • * * AL, Va., Glu. ‘ • '

60 3-1404 0-1774 15-8 AL, Glu., Va., Leu. 1*0721

120 2-9836 0-1797 15-4 AL, Glu., Va., Leu. 1*4898

180 2-8140 0-1821 15-3 AL, Glu., Va., Leu. 1 -9818

240 2-6416 0-1820 ... AL, Va., Glu. 1*8764

Table 9

200 gms. Soil + 1% G as Wheat Straw + 0-5% as Tata Basic Slag

LIGHT

0
60
120

180

240

3-4252 0-1729

2-8628 0-1983

2-6685 0-2037

2-4005 0-2143

2-3013 0-2128

AL, Va.. Glu.

41-6 Al'.’, Va., Glu., Leu. 2-5672

40-7 AL, Va., Glu., Leu., Asp, 3-7124

40-4 AL, Va., Glu,, Leu., Asp., 4-4872

Ly., Hi., Ar.

AL, Va., Glu., Leu., Asp., 4-2097

Ly., Hi., Ar.

DARK

0
60
120
180
240

3-4252 0-1729 • . «

3-0390 0-1830 26-1

2-8434 0-1877 25-4

2-6373 0-1911 23-0

2-4854 0-1907 ...

Al., Va., Glu,

Al., Glu., Va.

Al., Va., Glu., Leu., Asp.

AL, Glu.. Va., L(u., Asp.,Ar.

AL, Glu,, Va., Leu., Asp.,

Ar., Hi.

1-

6698

2-

4367
2-8189

2-7496

f
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Table 10

200 gms. Soil + 1% C as Wheat Straw + 0*5% as T. B. S. + Ghlorella

Period of Total Total

exposure carbon nitrogen Efficiency

in days gm. gm.

Aminoacids
identified

chromaiogra-
phically

Amount of
aminoacids
with respect
to glycine

LIGHT

0 3-4252 0-1729 Al., Va., Glu.

60 2-9684 0-1970 52-7 Al., Va., Glu., Pro. 2*5984

120 2-7160 0-2092 51-1 Al., Va., Glu., Pro., Leu. 3*7818

180 2-5374 0-2182 51-0 AL, Va., Glu., Pro., Leu., Hi., 45103
Ar., Asp., Ar.

240 2-4173 0-2169 AL, Va., Glu., Pro., Leu.., Hi., 4*2443
Ar., Asp.

DARK

0 3-4252 0-1729 Al., Va., Glu.

60 3-3904 0-1830 26-1 Al., Va., Glu. 1-6689

120 2-84343 0-1877 25-4 Al., Glu., Va., Leu. 2-4369

180 2-63732 0-1911 23-0 Al., Va., Glu., Leu., Asp.,Hi. 2-8187

240 2-48547 0-1902 ... Al., Va., Glu., Leu., Asp., Ar. 2-7495

Hi.

Table 1

1

200 gms. Soil + 1% C as Wheat Straw + 0‘5% P.^Oq as T. B. S. + Anabaena

LIGHT

0 3-4252 0-1729 • • . AL, Va«, Glu.
60 2-9604 0-1985 55-0 AL Va., Glu., Se. 2-8612
120 2-7152 0-2110 53-6 AL, Glu., Va., Se., Leu. 4*0391
180 2-5356 0-2191 51-9 AL, Va., Glu., Se,, Leu., Hi., 4*8326

Asp., Ar.
240 2-3866 0-2183

DARK

AL, Va., Glu., Se., Leu., Hi., 4-5349
Asp., Ar.

0 3-4252 0-1729 AL, Va., Glu.
60 3-0392 0-1830 26-1 AL, Va., Glu. 1*6696
120 2-84343 0-1877 25-4 AL, Va.. GJu., Leu. 2*4358
180 2-63738 0-1911 23-0 AL, Va., Glu., Leu., Asp. .Hi. 2*8189
240 2-48541 0-1907 ... AL, Va., Glu., Leu., Asp.. 2*7498

Hi., Ar.
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Table 12

200 gms. Soil + 1% G as Wheat Straw + 0-5% PgOg as T. B. S, + Tolypotlirix

Aminoacids Amount of
Period of Total Total

^ identified aminoacids
exposure carbon nitrogen Efficiency chromatogra- with respect
in days gm. gm. phically to glycine

LIGHT
0 3-4252 0-1729 . . . Al , Glu., Va.

60 2-9629 0-1992 56-8 Al., Glu., Va., Th.

120 2*7159 0-2112 54-4 AL, Glu., Va., Th., Leu.

180 2-5366 0-2200 53-0 AL, Glu., Va., Th., Leu.,

Asp., Ar., Hi.

240 2-3580 0-2194 Al., Glu., Va., Th., Leu.,

Asp., Ar., Hi.

DARK
0 3-4252 0*1729 Al., Glu., Va.

60 3*0392 0*1830 26-1 AL, Va., Glu., Leu.

120 2*1434 0-1877 25-5 AL, Glu., Va., Leu.

180 2-63736 0-1911 23-0 AL, Glu., Va., Leu., Hi.

240 2-4854 0 1907 . .

.

AL, Glu., Va., Leu., Hi , Ar.

Table 13

3'1327

4-

3672

5-

1853

4-9401

1-

6698

2-

4369
2-8186

2-7493

200 gms. Soil + 1 % G as Wheat Straw + 0*5% PaOg as German Basic Slag

LIGHT
0 3-4252 0-1729 ... AL, Va., Glu.

60 2-8340 0-1982 42-7 AL, Glu., Va., Leu.

120 2-6559 0-2051 41-8 AL, Glu., Va., Leu,, Asp.

180 2-3974 0-2157 41-6 AL, Glu., Va., Leu., Asp.,

Ar., Hi.

240 2-2784 0-2146 AL, Va., Glu., Leu., Asp.,

Ar., Hi.

DARK
0 3-4252 0-1729 AL, Glu., Va.

60 3-0376 0-1831 26-2 AL, Va., Glu., Leu.

120 2*8426 0-1877 25-4 AL, Va., Glu., Leu., Hi,

180 2-6361 0-1913 23-3 AL Va., Glu., Leu., Hi.

240 2-4980 0*1904 AL, Va., Glu., Leu., Hi., Asp,

Table 14

2-

7467

3-

8923

4-

5871

4-4108

1-

7224

2-

4178
2-9119

2-8274

200 gms. Soil + 1% G as Wheat Straw + 0’^% PoOj as G. B. S. + Chlorella

LIGHT

0 3-4252 0-1729

60 2-9600 0-1985 55-0

120 2-7189 0-2093 51-5

180 2-5298 0-2187 51-1

240 2-3840 0-2179 ...

d., Va., Glu.

H. Va., Glu., Pro. 2-7647

^l., Va., Glu., Pro., Leu.,Asp. 3-9353

M., Va., Glu., Pro., Leu., 4*6158

\sp., Hi.

\1., Glu., Va., Pro., Leu.,

\SD.. Hi., Ar.

[
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Period of Total Total
Amiiioacids
identified

Amount of
aminoacids

exposure carbon nitrogen ElEciency chromatogra- with respect
in days gm. gm. phically to glycine

DARK
0 3-4252 0-1729 t • r Al., Glu.,

,
Va.

1-7226
60 3-03767 0-1831 26-2 Al„ Va., Glu., Leu.

2-8426 0-1877 25-4 Al., Va., Glu., Leu. 2-4181

180 2-6364 0-1913 23-3 AL, Glu. ,
Va., Leu., Asp., Hi. 2-9118

240 2-4986 0-1904 ... AL, Va., Glu., Leu., Asp. 2-8268

Table 15

200 gnis. Soil "i”
^ WiicBt StrAw "t~ 0*5yo bs G. B. S, "p AhaBbcha

LIGHT

0 3-4252 0-1729 ... AL, Glu., Va. . .

.

60 2-9581 0-1996 57-1 AL, Glu., Va., Se. 3-2659

120 2-7163 0-2117 54-6 AL, Glu., Va., Se., Leu.,Asp. 4-4165

180 2-5280 0-2204 52-9 Al., Va., Glu., Se., Lea.,
Asp., Hi.

4-8724

240 2-3828 0-2197 . .

.

AL, Va., Glu., Se., Leu,,
Asp., Hi.

4-6 89

DARK
0 3-4252 0-1729 . * • AL, Glu., Va.

60 3-03762 0-1831 26-2 AL, Glu., Va., Leu. 1-7226

120 2-84262 0-1877 25-4 AL, Glu., Va., Leu. 2-4181

180 2-6364 0-1913 23-3 AL, Glu., Va., Leu., Asp. 2-9119

240 2-4986 0-1904 ... AL, Glu,, Va., Leu., Asp., Pli. 2*8273

Table 16

200 gms-. Soil
,
G as Wheat Stiaw + 0*5 /o G. B. S. + Tolypothrix

LIGHT
0 3-4252 0-1729 4 « « AL, Glu., Va. . . .

60 2-9584 0-2004 58-8 AL, Glu., Va., Leu., Th. 3-3729

120 2-7180 0-2135 57-4 AL, Glu., Va., Leu., Th.,
Asp., Ar.

4-5237

180 2-5289 0-2210 53-6 AL, Va., Glu.i Leu., Th.,
Asp., Ar., Hi.

4-9635

240 2-3837 0-2205 ... AL, Glu., Va., Leu., Th.,
Asp,, Ar., Hi.

4-6812

DARK
0 3-4252 0-1729 • • . AL, Glu,, Va.

60 3-03761 0-1831 26-2 AL, Glu., Va., Leu. 1-7225

120 2-84260 0-1877 25-4 AL, Glu., Va., Leu., Asp. 2-4179

180 2-6t.612 0-1913 23-3 AL, Glu., Va., Leu,, Asp. 2-9121

240 2-49801 0-1904 ... AL, Glu., Va., Leu., Asp., Hi. 2*8272
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Discussion

It is observed that there is an appreciable oxidation of carbon from wheat
straw, when mixed with soil and allowed to undergo slow oxidation in air at the
laboratory temperatare, more in the light than in the dark sets. There is con-
comitant increase in the number and amount of aminoacids formed along with
nitrogen fixation, which is also greater in the sets exposed to light than in the
dark. These observations show that light energy is helpful in nitrogen fixation
and subsequent utilization of the fixed nitrogen in the synthesis of aminoacids.

It is very interesting to note, that the efficiency of nitrogen fixation i\e, the
amount of nitrogen fixed in milligram per gram of carbon oxidised is always
greater in the sets exposed to light than those kept in the dark and the efficiency
gradully decreases, the reasons are clear from the following consideration. In

our previous paper^^ it is shown, that in soils, the process of nitrogen fixation is

always opposed by ammonification and nitrification. Thus on one hand, nitrogen
fixed on the surface of the soil undergoes various changes aided by light absorption
to form aminoacids and proteins and on the other hand these aminoacids and
proteins formed in the soil or sand undergo ammonification and nitrification

which arc accelerated by light absorption and form nitrite and nitrate in the
following manner :

—

+O2 +^2 +^2
Proteins >Aminoacids »NH4 compounds >N02

—

In these series of reactions the unstable ammonium nitrite is formed which
undergoes decomposition liberating energy and nitrogen gas as in the following

equation

NH4N02-^N2+2H20+718 K, cal.

But the addition of phosphate i*e, Tata or German basic slag to the systems,

form stable phosphoproteins or phospho ligno proteins which resist the amraonifica-

tion and nitrification processes. It is clear from the results that the amount and
number of aminoacids is greater in phosphated than in the unphosphated systems.

It is interesting to record that in the sets inoculated with algae some saving in

carbon and a small increase in nitrogen was always found in light though in the

dark, there was no significant difference in the carbon and nitrogen status of the

systems. The order of carbon saving was Ghlorella>Tolypothrix>Anabaena.
In sets inoculated with chlorella, there is a slight increase in nitrogen compared
with those which have not been inoculated. It is interesting to note that though
chlorella is not a fixer of nitrogen, even then it shows a small fixation of nitrogen

in light. The probable reason of this seems to be that in soils chlorella lives in

symbiosis with nitrogen fixing organism azotobacter^^ and during this process it

supplies the azotobacter with carbohydrates and the bacteria in turn fixes

nitrogen.

In the sets inoculated with tolypothrix and Anabaena, there is appreciable

increse in the nitrogen content over that of control sets as well as in sets inoculated

with chlorella, thereby having better efficiencey, the increase being greater in

the case of tolypothrix than in that of anabaena. This is in agreement with the

general observation made by various algologists that tolypothrix is a better fixer

of nitrogen than anabaena.

The systems inoculated with algae contain greater amount and number of

aminoacids than is contained in the uninoculated systems. This is probably due

to decomposition and oxidation of algal bodies which increases the amount and

I
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number of aminoacids. It has been generally observed that cblorella favours

the formation of proline, whih* in systems having anabaena and tolypothrix serine

and threonine have generally been detected. The amouni of aminoacids is always

larger in sets inoculated with anabaena and tolypothrix than in the sets containing

chlorella. The possible reason for this seems to be that anabaena and tclypothiix

fix atmospheric nitrogen along with carbon saving, the fixed nitrogen is utilized

in the synthesis of aminoacids and some of the aminoacids arc excreted in the

medium. Fowden^, Watanabe® and Williams and Burris,® found many free

aminoacid present in algae, Rothwell and Frederick^ observed aminoacids during

the decomposition of alfalfa and corn stover in soil at different temperatures.
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Oxidation of «-Hydroxy acids by Vanadium (V)
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Abstract

The stoichiometry of the oxidation of a-hydroxy acids by vanadium (V)
under different conditions of mineral acid concentrations has been established
potentiometrically using platinum and meicuiy coated platinum electrodes.

At low concentrations 2 equivalents and at high H^SO^ concentrations 4
equivalents of the oxidant arc used up per mole of the hydroxy acid, yielding cor-
responding aldehydes and carboxylic acids respectively. At intermediate concen-
trations ofH2SO4 the lack of stoichiometry is due to two simultaneous competitive
reactions leading to mixed products. These results ate explained on the basis of
the standard oxidation potential data. Products in some cases have been isolated

and identified.

1 he reactions have analytical significance.

In the oxidation of lactic acid by periodic acid Brown’ realised all the

successive oxidation stages (pyruvic acid, acetic acid, formic acid and finally GOj).

In the kinetic studies of the oxidations of a-hydroxy acids by different oxi-

dising agents, other workers*'® have assumed the oxidation products to be a-keto

acids, aldehydes or simple carboxylic acids depending upon the nature ol the

oxidant and the concentration of the mineral acid used.

In the present paper, the stoichiometry of the oxidation of lactic and man-

delic acids with vanadium (V) under varying concentrations of mineral acids has

been determined potentiometrically in addition to exploring analytical prospects

of such oxidations.

Experimental

M/100 solutions of NaVO, (Analar) were prepared, in different concentra-

tions of HoSO. and standardised with Mohr’s salt solution using N-phenyl anth-

ranilic acid as indicator. M/20 solutions of lactic and mandehc acids were

prepared in freshly distilled air free water and standardised with carbonate free

NaOH solutions.

For potentiometric investigations, 20 ml. of the acid vanadate -f xml, of

o-hydroxy acid, x varying from 0 to 2, were taken in a senes of ^ttles. After

vigorous shaking, the raction mixtures were allowed to remain at 28 C for 24 hours

to attain equilibrium. The indicator electrode, in the case of mandehc acid, was

a bright platinum foil and in the case of lactic acid was a mercury coated thick

[ 453 ]



platinum wire. While in the case of lactic acid the bright platinum foil failed to

detect any point of inflexion, in the case of mandelic acid both the electrodes

worked satisfactorily, the mercury electrode proving better (vide fig. 3). E. m. f’s

were determined by immersing the electrode in each bottle, one by one, and
combining it with"a saturated calomel electrode.

The»'*Hg'Coated Pt electrode was prepared by the method described by
Strouts, Gilfillen and Wilson.^

The Pt electrode, prior to its use, was cleaned in chromic acid followed by
treatment with (N) NaOH and subsequent washing with distilled water and glow-

in alcohol flame.

C
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Tabi-b 1

20 ml. of x{M/i00) NaVOs in y(N) HgSO^ ^ z ml. of M/20 a-hydroxy acid*

Temperature—28*^0

a-hydroxy acid X y

moles ofNaVOs per mole of
z the a-Uydroxy acid

Lactic acid 0*95 (M/20) 0-901 0-5 1-9 2-00

0-901 1 1-9 00C-l

0-901 4 1-9 2 00

0-950 8 1’7 . 2-35

0-950 10 1-2 3-33

0-950 14 1-1 3-63

0-960 18 1-0 4-00

Mandelic acid (M/20) 0-98 0-1 1-8 2-1

--- -0-98 - Q..5 jTg--
- '

2 -1

0-98 1 1-8 2-1

0-98 4 1-4 2-7

0-98 8 M 3-45

0-98 18 1-0 3*92

Volumetric determination of the o^hydroxy acids by oxidations with acid vanadate :

10 mL of a solution containing a tnown weight of the a-hydroxy acid and
30 mh of 0*95 (M/iO) NaVO.^j were mixed to which sufficient amount of concen-
trated H2SO4 was added so as to bring the acid concentration above 14N. After
thoroughly shaking and leaving the reaction mixture for 24 hours, the solutions were
diluted to 100 ml. The excess of vanadate in solutions was back titrated with a
standard Mohi salt soluti m using N phenyl anthranilic acid as indicator. At
the end point the colour change was from violet to green.

Table 2

H2SO4 concn. ^-hydroxy acid taken Found Error

16 N 45 mg. of lactic acid 44*1 mg. 2%
18N 45 mg, of lactic acid 44*4 mg. 1-33%

16 N 76 mg, of mandelic aeid 74 '95 mg. 1-38%

18 N 76 mg. of mandelic acid 751 mg. M8%

Results and Discussions

Prelirninary investigations as well as results in Table 1 indicate that both
the rate and stoichiometries of the present oxid i lions are mineral acid dependent,
the oxidation of ihe mandelic acid being faster than that of the lactic acid. In
the complete absence of mineral acids, no reaction occurs

; at concentrations
below N/2, no inflexion or vague ones were located in the e, m, f. curves. At
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H2SO4 concentrations N/2 to 4N, 2*0 moles, and above 14N, 4*0 moles of vana-

dium (V) are consumed per mole of the hydroxy acid. At intermediate concen-

trations of H2SO4 the moles of vanadium (V) consumed per mole of the hydroxy

acid are not integral, though the value increases and approaches a limiting one

of 4*0, as the H2SO4 concentration increases. Assuming one equivalent reduction

of vanadium (V) in each case, these results correspond to the following overall

redox processes,

AtbighH2SO4C0ncn.,RCHOHCO0H+4VO2+ +4H^ = RCOOH-f CO^+SHp
+ 4VO++ (t)

At low H2SO4 concn., RCHOHCOOH +2VO2++ 2H+

=

RCOCOOH -f 2H.fi
. + 2VO++

or RCHOHCOOH +2VO2+ + 2H+-RCHO+CO2 + 2H2O
+2VO++ {ii)

No significant change was noticed, except in the values of e. m. f., by sub^timting
HCl or HCIO4 for H2^04* The use of H3PO4 was difficult because the vanadate
solution tended to through a yellow precipitate, presumably a heterepoly acid.

At low acid'Concentrations, the reaction mixture, irt case of mandelic acid,

soon smelt of benzaldehyde which was isolated in the end and characterised as

its 2 : 4-dibitrpphenyl hydrazone (m. p, 2J5"G). In the case of lactic acid the

acetaldehyde formed was isolated and characterised as its dimedone. derivative
(m, p. 140°C). In the case of mandelic acid, at high H2SO4 concentrations the
pioduct, benzoic* acid, was isolated, recrystallised and its m, p. checked. Any
rt-keto acid formed as an intermediate is, therefore, ultimately, wiih lap ^e of time,
converted to the aldehyde without affecting the stoichiometry of the redox
process.

At intermediate acid concentrations (4N to 14N) the lack of stoichiometry

is presumed to be due to two simultaneous competitive reactions (i) and [ii) lead-

ing to mixed products. The fact that m no case more than one inflexion is noJeed
in the e. m, f. curves leads to the conclusion that the same equilibrium constant

covers both products.

Oxidation to formic acid (in case of lactic acid) and CO^, requiring 10 and
12 equivalents of the oxidant respectively, is not indicated even at acid concentra-

tions greater than i4N.

The acid dependence of the reaction rate is understood in terms of the exis-

tence of an equilibrium

VO2+ + H3O+ - V(0H)3++

followed by the attack of the doubly charged cation which is known to be a more

powerful oxidiser than the V02'^ itself®. The range of redox process which can

then occur is limited by thermodynamic considerations. On the basis of the

potentials of the lactic acid—pyruvic acid couple® iE° = -0‘20 volt) and acetalde-

liycic—acetic acid couple^® (E° = 0T18 volt) it should be relatively easy to oxidise

lactic acid to acetic acid than to pyruvic acid (or acetaldehyde). Yet both vana-

date and dichromate®, which differ in their E*^ values by 0*30 volt only, oxidise,

at low acid concentrations, lactic acid to pyruvic acid (or acetaldehyde), oxidation

to acetic acid occurring only at high H2!^04 concentrations. With respect to the
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reduction of vanadate, larger decreases of free energy are expected in the reduc-
tion to V(IV) (E° = -1*000 volt) rather than to V(III) (E® = -0*68 volt). More-
over, comparing with other weak 2-equivalent oxidants like T2 (E*^ = -0*33 volt)

or arsenic acid (E° = -0*559 volt), the V(III) -V(IV‘) couple is not likely to be
involved in organic oxidations.

The stoichiometric oxidations of thea-hydroxy acids at high HgSO^ concen-
trations raise the prospects of their analytical applications. An attempt has been
made to evolve a method with an error of less than 2% (Table 2).
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The soil fertility is impoverised by continuous cropping- The capacity of

the soil to supply nutrient elements to plants in required amounts and balanced

proportions is commonly termed as ‘‘Soil fertility”. It is governed by several

factors. Of them, most important is the organic matter. As soil organic matter,

in addition to amelioration of physical properties of soil, improves nutrient status

of the soil, when it undergoes slow oxidation in the soil. A majority of soil scien-

tists, have emphasised a need of replenishing the supply of organic matter in the

soil, Karunakar, R. D. (1951) pointed out that organic matter adds nutrients to

the soil. It has also been revealed by a number of soil scientists that organic

matter chelates the nutrients available in the soil and thus checks the loss of avail-

able nutrients from soil.

In Indian soils organic matter is lower as compared to the soils of European

countries. It ranges from 0*4 to 0*6%. In view of the vital role of the organic

matter in the land fertility and its general deficiency in our soils, one of the major

problems of Indian Agriculture is to build up soil organic matter and to con-

serve it.

The sources of the organic matter are crop residues, green manures, animal

refuse, weeds and tree leaves. Out of these, crop residues can not be utilised

by transporting to another field, and green manuring is not always profitable due

to usual corp rotations. The animal refuse, weeds, tree leaves have other uses

like fuels than as manure. Composting is advocated for this purpose, yet com-

posts have a doubtful utility in the building up the organic matter content of

soil. It is because of heavy losses of nitrogen during composting process which

is reported by many scientists mainly Albrecht and Poirst, Gilbert, Pember,^

Gerlach etc.

Dhar and co-workers have found that direct application of plant materials

to the fields, instead of composting, is more beneficial to crops because the energy

materials like'carbohydrates, fats, lignin etc. when added to the soil, are slowly,

oxidised. The energy liberated helps in fixing atmospheric nitrogen on the soil

surface, forming NH3, Amino acids and other nitrogenous compounds,

A study of comparing organic matter used directly and after composting has

been made by us in pots in the green house of the Institute under controlled con-

ditions in the wheat.

Experimental

Soil of top 9” was taken, dried, powdered, cleaned from foreign materia s

mixed well before use. 6 kgs of this soil were taken m which organic marerials
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.

g, Paddy straw, water hyacinth and weed (after thorough mixing, powdering,

and sieving through 100 mesh) were added @ lO tons/acre. Phosphate was added
as G. B. S. @ 50 ibs. P2O 5

percent. For indirect method composts (phosphated
with G. B. S. containing 17*4 % P^Og) were already prepared. The rate of

compost application was on nitrogen basis which was 100 lbs. per aci e.

After thorough mixing the mixture was filled in pots and the system was kept
moist with 20% moisture level by weight. In case of direct application the pots
were exposed to sunlight for one month with mixing of materials at an interval

oi a week, where as in composting the soil and composts were thoroughly mixed
and exposed for 15 days with two mixings and 20% moisture level. Then the
wheat crop was sown in both the systems on the same date.

Scheme :

1 . Soil alone

2. Soil + mixed leaves (weeds)

3. Soil + weed + G, B. S, @ 1% P2O5 ,

4. Soil 4- weed + G.B. S. @ 0*5% P^Og.

5. Soil + water hyacinth

6 . Soil + water hyacinth + G. B. S. @ 1%
7. Soil +53 j 3 + jj @ ^’5%

8 . Soil + Paddy Straw

9. Soil +33 33 + @
10. Soil +33 33 “P 33 @ 0’b% ^2^5 *

Treatments were the same in direct and indirect applications.

Replications

Total no. of pots
Design
Date of sowing
Date of harvesting

Variety
Plant population (per pot)

4
40
Randomised Block Design
15thi Oct, 1968
28th April 1969
K-68

Materials taken for the application :

Organic matters :

Analysis Water hyacinth Paddy straw Weed (M
Loss on ignition 63-241 86-23 89*45
Ash 38-53 13-04 10-13
Fe^Oj 1-34 1*33 0-42
AlgOs 0-089

GaO 2-263 0-66 0-74
MgO 0-785 0-169 0*708
Kp 4-684 1-706 0*983

0-563 0-710 0-526
Total carbon 32-44 31-996 41-349
Total nitrogen 1-514 0-580 0-659
C/N ratio 21-56 55-17 63-61
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Analysis of German Basic Slag which is used as phosphate

Silica 13-227

FcaOa 16-136
Total Pp, 17-853

Available P^Og 8-997
Total GaO 41-132
Total K.JO 0-184
Total MgO 5-103

Analysis of compost prepared (phosphated and unphosphated)

Phosphated with G. B. S.

Analysis 1% level 0*57o level Unphosphated

Mixed weeds compost

Total carbon 12-93 16-04 25-01

Total nitrogen 1-68 1-49 1-16

NH^-'N 0-062 0-043 0-0431

NOa-N 0-1214 0-102 0-0896

Available P^O^ 0-721 0-385 0-282

Paddy straw compost

Total carbon 9-75 11-03 19-68

Total nitrogen 1-58 1-36 0-93

NHa-N 0-084 0-046 0-271

NO3-N 0-139 0-963 0-072

Available P^Og 0-649 0-341 0-2639

Water hyacinth compost

Total carbon 16-491 17-680 20-143
Total nitrogen 2-594 2-406 1-937

NHa-N 0-136 0-1203 0-0814
NO3-N 0-198 0-2013 0-1030
Available P^Oa 0-697 0-335 0-6910

Average Yield of wheat crop- (in grains)

Treatments Direct (grain) Indirect (grain)

Soil alone 53-1 50-6

Soil + mixed weed 136-3 68-5

Soil 4- mixed weed 4-1% PP» 151-3 79-3

Soil 4- mixed weed + 0*5% 146-2 72-2

Soil 4- water hyacinth 149-6 73-8

Soil + water hyacinth 4“ 1% PsOg 167-4 89-5

Soil + water hyacinth 4- 0‘5% P3O5
152-9 76-8

Soil + Paddy straw 131-4 62-0

Soil "f Paddy straw 4* 1^/
3 P2^5 146-2 70-1

Soil 4- Paddy straw 4" 0*57o P2O 6
139-5 67-5

Discussion

An examination of the yield data manifests a marked Increase in yield of

wheat crop in all treatments in which organic materials such as paddy straw,

[
461

]



mixed weeds, water hyacinth have been added either directly or indirectly over
control. Moreover, when organic matter is applied in conjunction with calcium
phosphates German Basic Slag higher yields were obtained over the control as

well as even the treatments in which only organic matter was added.

Dhar and his coworkers have established this that slow oxidation of organic
matter fixes atmospheric nitrogen. Further they have also proved that addition
of phosphates in conjunction with organic matter stabilises the ^ fixed atmospheric
nitrogen due to phosphorylation. From this fact, it can be stated that increase
of wheat yield, in treatments in which organic matter

,
and organic matter with

phosphates were added, is due to fixation of atmospheric nitrogen as well as the
availability of phosphate, calcium, Mg., potassium and to some extent trace ele-

ments. due to dissolution of basic slag in the soil on account of liberating of organic
acids chiefly carbonic acid owing to slow oxidation of organic matter in soil.

Direct application of organic matter (phosphated and unphosphated) is

better than that of indirect (compost) because in case of direct ’application more
nitrogen was fixed in the system. The whole of fixed nitrogen was utilized by
plants grown. But, during composting, the fixed nitrogen was lost in the form of
gases and leaching (reported by Dhar and Goworkers).

With forgoing discussions it can be concluded that direct application of
organic matter both phosphated and unphosphated is superior to indirect appli-
cation and at the same time higher doses of phosphorus was found, to be superior
to lower doses.
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Abstract

Surface soil samples (0-9'’^) from 153 villages ol four sub-divisions of Indore
district vtz^, Mhow, Depalpur, Indore and Sawer which is a Manganese deficient

area of the State, were analysed for exchangeable and reducible Manganese and
for Cal. Carbonate, Organic Carbon and pH. The soils are found to be deficient

in available Manganese but high in reducible Manganese. The soils of some of

the villages in the locality were found to be acutely deficient in available

Manganese.

Correlation studies indicated that available Manganese bears a negative

relationship with pH and Cal. Carbonate but a positive relationship with Organic
Carbon and reducible Manganese content of the soil. The correlation between
available and reducible Manganese was found to be highly significant.

The importance of Micro-nutrients in Indian Agriculture can not be over

emphasised especially in view of the efforts being made to improve Agriculture

oil scieiltific Ifees^ ^and on intensive cropping with high doses of fertilizers for

increasing pro(dy.<^tioit pxer unit area per unit time. Iniecent yenrs, the iniport-

ahce of the Micro* nutrients in increasing Agricultural production and correcting

deficiencies in plants : has been recognised by soil scientists all over the world.

In the list of essential micronutrients, Manganese occupies a place second only

to iron in order of importance for plant growth. Its availability directly depends
on the soil pH, CaCOg and Organic Carbon content (Leeper, 1947. Biswas, 1951,

Khanna, 1^54). The medium black soils of India are rich in total Manganese but
low in available Manganese (Bisvvas 1951 , 1953). It was also observed by earlier

workers that the medium black cotton soil of Malwa plateau is deficient in avail-

able Manganese (Sharma and Motiramani 1964). The present study was conduct-

ed to find out the quantity of the two different forms of Manganese (Water
Soluble 4- Exchangeable i. e, available and reducible Mn) in some medium black

soils of Madhya Pradesh and to determine the relationship between different soil

properties and reducible Manganese with available Manganese. ;

Experimental

The surface soil samples were collected from the representative soils of 153

villages of Indore District. The samples were analysed for available Manganese
(IN. Ammonium Acetate pH 7‘0), reducible Manganese (TN. NH^ Acetate pH
7*0 4“ 0*2% hydroquinone), pH (I : 2*5 soil water latio by Beckman pH meter
using glass electrode) as per procedures described by Jaclsson (1958) Organic
Carbon (Walkley and Black’s procedure, 1934) and Calcium Carbonate (rapid

titration procedure as described by C. S, Piper, 1950). Estimation of Manganese
was done by the Colorimetric procedure (Willard and Greathouse, 1917). . .
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Results and Discussiou

The Manganese deficient medium black soils of M. P. which were taken up
for study are clayey in texture with high calcium carbonate content. They are
low in Organic Carbon content as shown in Table 1 (Muhr et at* 1965).

Table 1

Soil Characteristics (Average Values)

S. N. Sub-Division No. of Samp. pH GaC03% O. C.?5

1. Mhow 60 8‘0 250 0-460

2. Depalpur 55 8-1 230 0*440

3. Indore 53 8-1 230 0-455

4. Sawer 41 8-2 22-0 0445

Average of Total 2G9 8'1 22-0 8-450 •

IMstributidu of Manganei^

Manganese status of soils is presented in Table 2. The available Manga*
nese of these soils varied from 1*92 to 9*62 ppm with an average of 5*05 ppm for

the district. Thus it can be safely said that these soils are poor in available

Manganese (Toth- 1951, Sharma and Motiramani, 1964),

Table 2

Distribution of Manganese (Available and Reducible)

Available Manganese Reducible Manganese
S. N. Sub- Division No. of

Samps. Range (ppm) Aver (ppm) Range (ppm) Aver (ppm)

I. Mhow 60 1 •92-9-62 6-01 21-16-481-0 255

2. Depalpur 55 2-16-5-20 5-2 48- 10-^81-0 258

3. Indore 53 2-16-8-42 4*7 48-10-408-0 202

4, Sawer 41 1-92-8-42 4-4 120-0 -425-0 198

The easily reducible nganese content in the entire district ranges between
2 1 *16 and 48

1
ppm with an average value of 236-43 ppm. Most of the samples

showed a higher amount of easily reducible Manganese content (Leeper, 1947).

Table 3

Dis.tributiQn of available Manganese Sub-division-wise

Sub-Divisions

Range of Mn (ppm) Mhow Depalpur Indore Sawer

No. of Samp% No. of Samp% No. of Samp% No. of Samp%

1-92-3-84

3-84-6-40

6-40-9-62

17 28%
17 28%
26 44%

7 12%
35 63%
13 25%

15 28%
33 64%
5 8%

16 39%
23 56%
2 5%
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Table 3 gives a comprehensive view of the distribution of samples under
different ranges of percentages. Study of Table 3 reveals that all tne samples
have less than 10 ppm of available Manganese content showing thereby, that the

entire area in Indore District is deficient in available Manganese content. It

will be seen that more than 50% samples of each sub-division have less than 6*4%
Available Manganese, However, the soils of Sawer, Indore and Dcpalpur, sub-

divisions are comparatively more deficient ihan of Mhow sub-division. Sharma
and Shindc (1968) hive also reported similar results in black soils of Indore

region. The results reported here also indicate that these soils are poor in

available Manganese but high in reducible Manganese.

Relationship of Available Manganese with reducible Manganese and other soil components

The relationship of Available Manganese with reducible Manganese and
other soils components such as pH, OaCO^ content and Organic Carbon content

is given below in Table 4 after working out the correlation coefficients.

Table 4

Correlation between Available Manganese and different soil components

S, No. Correlation Between r-V^dues ^

1. Available Manganese and soil pH -0T2

2. Available Manganese and CaC03 content, 4)T29

3. Available Manganese and Organic Carbon content. +0*135

4. Available Manganese and Reducible Manganese. +0*382^

Significant at 1% level.

The correlation studies made between Available Manganese and other soil

characteristics show that there is a negative corrdation with pH and GaCOa but

a positive correlation with Organic Carbon and Reducible Manganese. However,

the coefficient of correlation was found to be statistically significant, only in the

case of Reducible Manganese.

The negative correlation in case of pH is in conformity with the observations

of Berger (1948) Jones (1957), Zende et aL (1959) Randhawa aL (1961), Mittal and

Roy (1963) and also of previous workers in this laboratoiy viz; Sharma and

Motiramani (1964) Dixit (1965), and Sharma (1966) who also found it to be highly

significant statistically. This fact could be explained on the basis that at low pH,

Manganese is present as di*valent Manganous ion which has higher solubility

(Hewitt-1946), Berger and Gerloff-1948 and Biswas- 1953) but with the iricrease

in pH it gets converted into trivalent and tetravalent ions of Manganese which get

precipitated as insoluble oxides and thus get converted into unexchangeable and

therefore unavailable form (Sherman and Harmer-1942, Biswas- 1953). Tow

values of exchangeable Manganese have also been reported in saline soils oi

Rajasthan, Punjab and U. P. by Vinayak et ql. (im), Bhumbla and Dhingra

(1964) and Agarwala et aL (1964) respectively.

The negative correlation observed in the case of

also a harmony with the results reported by Yadav apd Ralra JI964) Sherman

and Fujimoto (1947) and Lohnis (I960) who reported decrease m available Man-

ganese on addition of lime to Acid soils and also by previous workers m this
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laboratory viz I
Shariua and Motiramani (1964), Dixit (1964) and Sharma (1966)

who also observed a negative significant correlation between available Manganese
and GaCOs content of soils. It is also in keeping with the negative relationship of
Available Manganese with pH as pH is directly, related with CaCOs content of soil.

The positive correlation observed in the case of Organic matter is not
statistically significant. This is in conformity with the results of some earlier

workers in this laboratory viz
;
Sharma et al. (1964) and Dixit (1965) but is contra-

dictory to the observations of Sharma (1966), In the literature also contradictory
results have been reported by different workers (Kanwar and Randhawa 1967).
Hence the role of Organic Matter in the conversion of Manganese oxides is not
clear and there seems to be no significant relationship between Available Manga-
nese and Organic Matter, especially when Organic Matter content is poor as is

the case here. The positive correlation between Available and Reducible Manga-
nese is also found to be highly significant statistically. This observation is also

in agreement with the observations of earlier workers oiz.^ Sharma et aL
'

(1964),
Dixit (1965) and Sharma (1966). Thus, there seems to exist a direct relationship
between these two forms of Manganese, both of which are beneficial for plant
growth (Jones and Leeper-1951)-
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Reactions of 4-hydroxy- 3-nitro (or-5-bromo)-l-acetonaphthone with various
aryl aldehydes in presence of 40% aqueous potassium hydroxide solution lead to
the formation of coloured crystalline compounds. Some of these compounds
have been found to be ejBfective against S, aureus,

Ghalcone compounds are known to possess antibacteriaP»^, cardiovascular^
germicidaP, antifungaP, etc. activities. Davis and Eaton have suggessted^ that the
compounds having (-GH = GH - GO-) grouping possess good insecticidal pro-
peitiea. In the present communication we have synthesized naphthalene
analogues of chalcone in which phenyl and naphthyl groups are bridged by this
grouping. These compounds have been prepared by the condensation of
4-hydroxy-3-nitro (or-3-bromoj -I- acetonaphthone with various aromatic
aldehydes such as, bromo, chloro, methyl, hydroxy, nitro benzaldehydes and also
with bromo veratricaldehydes, bromo vanillin, nitro vanillin, piperonal, bromo
piperonal and 4-dimethylamino benzaldehyde in alcoholic medium (30-40 ml.),
by using cold alkaline condensation.

^

It w^as observed that 50% alkali solution gave crystalline compounds with
4-hydroxy-3-nitro -1-acetonaphthone and the required aldehydes except nitro
benzaldehydes which resulted into a mixture of unknown composition. Similar
results were obtained in c..se of 3-bromO'‘4-hydroxy-l-n..phthyl substituted
styryl ketones. In these cases the condensations were carried out with 10%
potassium hydroxide solution at room temperature. This indicates that nitro
benzaldehydes are sensitive towards the action of alkali in comparison with nitro
methyl aryl ketones that is why with concentrated alkalis unidentifiable mixtures
are obtained.

The chalcones of the 4-hydroKy-3-nitro (or 3-bromo) -l-acetonaphthone
with, halo and nitro benzaldehydes were obtained in quite good yield (about
75-90%), methyl and methoxy benzaldehydes gave about (45-607o) ol the theore-
tical yield, hydroxy benzaldehydes were obtained in very poor yield. The poor
yield in case of h)drcxy chalcones of naphthalene series may be on account of
secondary reactions such as, resinification, etc. in presence of alkali solutions.

The presence of ketonic group in the synthesized compounds was charac-
terized by preparing 2,4-dinitrophenylhydiazone derivatives. The analytical
data and melting points are given in table 1.

The compounds of the 4-hydroxy-3-nitro-l -acetonaphthone series were
screened for their antibacterial activity by observing their effect on S. aureus.
The activity was tested by using agar-cup method and the results were compared
with benzoic acid (table 2).
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It was found that compounds having halogen atom or nitro group in the
aldehyde component possessed marked antibacterial power. The halogen atom
at ortho position r. s, to the conjugated system were more active than those at
meta or para position.

Experimental

All melting points are uncorrected.

3-bromo-4-hydroxy-l~acetonaphthone was prepared by bromination of
4-hydroxy~l -acetonaphthone.^

General Methodfor the Synthesis of chalcones

40% aqueous solution of potassium hydroxide was gradually added with
shaking to an ethanolic solution of equimolecular quantitiesw of 4~hydroxy“3-nitro
(or 3-bromo)-l-acetonaphthone and the required aldehyde. The mixture was
allowed to stand for a couple of hours with shaking at intervals. It was then
poured into a beaker containing a mixture of crushed ice and water and then
neutralized with 20% hydrochloric acid to a pH of 6. The precipitated compound
was collected on a Buchner funnel, washed with 1% sodium bicarbonate solution
to eliminate the acid formed due to Gannizaro reaction and then finally from
water. The crude compound on crystallization from a suitable solvent gave
crystalline compounds (table 1)*

TABLE 2

Antibacterial activity of 4-hydroxy-3-nitro- 1-naphthyl substituted
styryl ketones

Gone. Diam. of Gone. Diam. of
Substituents in Zone of Substituents in Zone of

mg./ml. inhib. in mm mg./ml. inhib. in mm
2-bromo 18 12 3-nitro 20 10
4-bromo 20 11 4-hydroxy^

3-methoxy 23 —
3-chloro 19 10 2-meihoxy 24 8
2, 6-dichloro 18 12 3, 4-methylene-

dioxy 23 6
2-hydroxy 24 - 4-dimethylamino 22
4-hydroxy 23
2, 4-dihydroxy 25
2-methoxy 27 —

2, 3-dimetboxy 26 -

Benzoic acid 20 12
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Abstract

Herein we have studied the variations of flow parameters for plane hydro-
magnetic flows along the streamlines and their orthogonal trajectories

;
consider-

ing two stems of plane curves one related to the streamlines and the other to

their orthogonal trajectories.

1. Introduction

Warsic [5] in his recent paper has studied the variation of flow parameters
for steady plane magnetogasdynamic flows. Defining two systems of plane ortho-

gonal curves of congruences one related to the magnetic lines of force in earlier

paper [4] we have studied the intrinsic properties of plane hydromagnetic flows.

In this paper we have studied the variations of flow parameters along the stream-

lines and their orthogonal trajectories for plane hydromagnetic flows. Decom-
posing the equation governing conservation of mass into intrinsic form, it is proved
that the streamline patterns as a system of concentric circles or parallel lines, if

the momentum per unit mass of fluid is conserved along a streamline, which is

independent of the magnetic field. It is also observed that the coincidence of

isovels with the streamlines does not imply the coincidence of isobars with them
as in the case of non-magnetic flows. The field equation is independent of the

tangentral component of the magnetic field to the streamline. Introducing the

velocity of the sound, we have transformed the equation into intrinsic form and

observed that the variation of mach number along a streamline is equal to the

product of the curvature of normal congruence and the mach number for Chap-

lygon’s gas.

2. (/4) Basic Equations

The basic equations governing steady hydromagnetic flows, in the absence of

extraneous forces are given below in the usual notation :

(1) div [P q) =0
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(2) p{q.^)q = -\/p-\-V'ejX H

(
3) {q .^) H { H div 5 - ( . V ) q

(4) p =1 py

(5>
div H ~ &

(6)
Cq.V)S=0

where 'q,H,P,p,S,i>-e,y,\ and are the velocity vector, the magnetic

field, the density, the pressure, the specific entropy, the magnetic permeability,

the adiabatic exponent, Joul’s constant and the specific heat at constant volume
respectively.

[E) Geometric Results

Considering t and n as twa plane curves of congruence, one of them related

to the streamlines and the other to their orthogonal trajectories and also denoting

J")
directional derivatives along these vectors, we have the fallowing

geometric results [3} :

(7)
A ^1= i
ds q

d t t.

(8) *
- ” ‘

(9) ^=-1^

d n M
(10)

11

where k and are the curvatures of the streamlines and their orthogonal trajec-

tories respectively.

Also using the irrotational property of 'V /’ we obtain

* dn ^ rfa V * y
“ dj ^ Wn /

This has to be satisfied by any flow quantity.

3. Decomposition into Intrinsic Form :

In this section, we shall make use of the above geometric results to transform
the basic equations into intrinsic form and study some of the kinetic and kinematic
properties of fluid flows.

Using (7) in (1) we have
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(13)

which gives Ihe curvature of orthogonal trajectories of the streamlines. If the
momentum of a unit fluid mass is conserved along an individual streamline then
the stream patterns must be either a system ot concentric circles or a fainily of
parallel straight lines, i.e,, the flow due to a vortex type or rectilinear.

^

Forming the scalar product of (2) by t and n, we obtain successively

(14)

(15) PqU

where Ht and Hn are the resolved parts of the magnetic field along the stream-
lines and their orthogonal trajectories. From (14) we observe that the coincidence

of either isovels or isobars with the streamlines does not imply the remaining as

in the case of nonmagnetic flows, c.f, Nemenyi and Prim [1]. Also it is evident
from (14) that the coincidence of any two of isovels, isobars and the magnetic
lines with the streamlines implies the remaining. From (15) we obtain the

current density expression, when the streamlines and isobars intersect ortho-

gonally, the pressure remains uniform along the orthogonal trajectories of

the streamlines as

(16) J
(>k

N Ht

Also if the streamlines are straight,

straight lines.

the magnetic lines are either circles or

The field equation (3) in intrinsic form can be decomposed as

(17 ) + )

(IS) ,( w, + + (-g-r,)
-{kqHt-k'q Hn) = 0

The conservation of magnetic field can be written as

(19) + ^^[kHn + k' Ht) = 0

Eliminating
djh
ds

from (17) and (19) we obtain

(20 )

Also eliminating
dHn
ds

from (18) and (19) we obtain
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(? H^) “ 0

Eliminating ^ and from (20) and (21) we obtain

/99\ ^ ^ _ A
^ ^ ds dn ds dn

This is the field equation in intrinsic form

Using (4), (2) can be written as

(23) { ? . V ) 9 + ^ ^ ^+J / A ^

Forming scalar product of (23) by /, « and using (4) we get

"
ds y-\ ds

k +
2c dc dS

, Pe
' ''

' 7-1 dn ~ \cp (y-l) + 7
From (14) and (24) w’e conclude that the coincidence of any two of the

isovels, isobars, magnetic lines and sound vels with the streamlines implies the
remaining two.

Also using (4) in (1) we obtain

(26) A' = ^logM+^- ^log.

Eliminating the density from (1) and (4) we obtain

_2

(27) A' = ^ log
(

rT'-l
q )

For Chaplygin’s gas (27) simplifies to

(28) ^ log M
This gives the variation of the mach number along a streamline.
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Abstract

The oxidation of toluene has been studied in sulphuric acid medium. The
reaction is first order w, r. t* peroxydisulpbate and zero order w. r. t. toluene.

The specific rate is related to AgNOs concentration by the relationship :

k = 0*06x10-3 + 1'3 CAg***

The salt effect is negative. The energy parameters are a E 12*4 Kcal/

mole, A = 7*67 x 10® litre mole-^ sec"^ and A S = - 42‘85 E, U.

The uncatalysed oxidation of diflerent organic substrates by peroxydisul-

phatc ion is generally slow. They are appreciably catalysed by silver ion. The

kinetic studies involving peroxydisulpbate ion as an oxidising agent have been

recently reviewed by Housed Bacon and Doggai found that toluene on oxida-

tion by peroxydisulpbate ion yields a number of products—benzoic acid, benzal-

dehyde, bibenzyl and a small amount of resinous products. However, toluene

on oxidation with permangnate in aqueous medium yields benzoic acid as thechiet

product^, but oxidation of toluene gives benzaldehyde as the main product^.

A review of the literature, however, shows that the kinetic study of the oxidation

of toluene by peroxydisulpbate ion has not been investigated so far. The present

paper deals with the kinetic study of the Ag+ catalysed oxidation of toluene by

peroxydisulpbate ion.

Experimental

The experimental procedure is similar to that adopted in the studies on

phthalic acid-peroxydisulphaie reaction^ All chemicals used were ot Analar

grade and toluene of Analar grade was used after redistillation.

The reaction was slow but the rate was measurable after addition of AgNOg

at 45°C and above.

Results and hleasurements

Since the self decomposition of peroxydisulpbate ion at this temperature is

appreciable in the presence of AgNOg, the rate of self decomposition was studied

simultaneously and the rate of disappearance of S^Og' due to toluene was ej^aluat-

ed by subtracting the rate constant of self decomposition from the observed rate.

To avoid precipitate and emulsion formation, the reaction was carried out in

sulphuric acid medium (O’025 M).
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Effect ofpeioxydisulphaie ion concentration

The effect of initial concentration of K.2S20g on its rate of disappearance
was determined at constant concentrations of toluene, AgNOg and HgSO., vide

Table 1.

Table 1

AgNOs = 0*001M Toluene = 0’057M

H^SO^ =r 0‘025M Temp. = 45°G.

S. No.
Gonen. of

KoSPs (M)
k' X 103

min"^
k" X 103

min"'
(k" - k') X 103

min"'

1 0-005 1-76 3-90 2-14

2 o-oio 1-92 3-44 1-52

3 0-015 2-01 3-34 1-33

4 0-020 2-19 3-11 0-92

5 0.025 2-23 2-79 0-56

6 0-030 2-24 2-73 0-49

k" = Specific rate in presence of toluene

k' == Specific rate in absence of toluene

It is seen that at all concentrations of peroxydisulphate ion studied, the

reaction is first order. However, the rate const^int is found to decrease with the

increase in SoOq'’ concentration. This decrease could be ascribed due to increase

in ionic strength but this is noi possible because in any particular run the rate

constant does not decrease with time although the ionic strength o: the reaction

mixture increases as the reaction proceeds. The other possibility for this behaviour

is that the K+ exerts a specific inhibitory effect. This type of behaviour has

also been shown to be present in other peroxydisulphate redox reactions, C.f

Khulbe and Srivastava’s^^ observations on the oxidation of glucose by K^S^Og,

Effect of toluene concentration :

The rate constants corresponding to different initial concentration of toluene

are given in Table 2.

Table 2

K^SPa =
H^SO, =

O-OIOM

0-025M

AgNOs =
Temp. =

O-OOIM

45°G

Conen. of
toluene

(M)

0-038 0-057 0-076 0*114 0*142

(k'-kOxlOS
min"' 1-51 1-52 1-63 1-55 1-67

k' = l'92x I0‘® min'h
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It is clear from the above table that the rate constant is not anpreciablv
affected by a change m toluene concentration.

Since the reaction follows a first order behaviour when the concentration of
toluene is in excess {vide kinetic runs 1 and 4 and 5 under Tables 1 and 2 respec*
tively) and also when the concentration of and toluene are similar the
reaction, therefore, is first order in ^ero order in toluene.

'

Effect ofAgJ^O^ concentration :

Table 3 summarises the results for the effect of AgNOg concentration on the
rate of oxidation of toluene.

Table 3

K2S2O3 — O-OIOM H2SO4 = 0-025M
Toluene —: 0-057M T emp. 45®G

S. No.
AgNOs concn. k' X 103 k'x 103 (k''-k')xl03

(M) min”^ min**^ min**^

1 0-0005 1-38 2-06 0-68

2 OOolO 1-92 3-44 1-52

3 0-0015 3-19 4-98 1-79

4 0-0020 4-00 6-08 2-08

5 0-0025 4-83 8-28 3-45

The specific rate is found to be linearly related to the concentration of
AgN03 and is given by the expression :

k =-0‘06xl0-3 + 1-3 CAg +

Effect of temperature ;

Results for kinetic runs at five different tempertures are tabulated in Table 4,

Table 4

KoS^Oq ^ 0‘OIOM AgNOs == 0*001M
H2SO4 = 0025M Toluene = 0*057M

S. No. Temp. °A
k'xl03
min'

3

k^xlOS (k"-k'_)xl03

min'3 min'3

Temp.
coefficient

ae
Kcals/

mole

AxlO-
litre

mole’
sec"^

3

AS
1 E. u.

1 308 1-12 1-91

0-

79\
\

1-

16\/
/\

1-

52\/

2-

12 /

7-48 -42*87

2 313 1-48 2-64 1-92 12-7 7-89 -42-76

3 318 1‘92 3-44 1-85 12-2 7-61 -42-84

4 323 2-60 4-72 1-80 12-3 7-82 -42-86

5 328 3-69 6-44
/

2-75 7-56 -42*95

Mean T86 12-4 7-67x 103 -42-85

A'E for self decomposition = 12*1 Kcals mole*^
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A perusal of the above values shows that the energy of activation for themal
decomposition of S2O8

" and for toluene oxidation is of tl^ie sanje order suggesting

that the mechanism of both the processes is sitnilar.

A large negative value of /\S suggests that the activated complex .formed

with the reductant is rather rigid in structure and further the rate determining
reaction is between two oppositely charged ions. It may be mentioned here that

a negative value for the entropy of activation has also been reported for other Ag*^

catalysed redox reactions of peroxydisulphate involving organic substrates

Khulbe and Srivastava^.
,

: . .

Salt effect :
*

In order to determine the effect of change of ionic strength on the rate, the

reaction was carried out in the presence of different concentrations of K^SO^,
added as neutral salt.

TabIiB 5

KsS^Og = 0‘010M, AgNOs = O^OOIM, Temp. == 45^C

H^SO^ = 0025M, Toluene = 0-057M

S. No.
K2SO4
conen.
(M)

k'xio*
min'^

k" X 103

min-^
(F-k') V 103

mio*^
log (k'-k')

1 1-92 3-44 1-52 -2-817 0-106 0-326

2 0010 1-80 3-02 1-22 -2-914 0-136 0-369

3 0*020 1-75 2-81 1*06 -2-975 0-166 0-407

4 0-030 1-70 2-71 1-01 -2-994 0-196 0-443

5 0-040 1-69 2-65 0-96 -3-019 0-226 0-475

6 0*050 1-67 2-51 0-84 -3-079 0-256 0-502

7 0 075 1-41 2-21 0-80 -3-097 0-331 0-575

8 1-13 1-89 0-76 -3-114 0-406 0-637

^

It is seen that the salt effect is negative. However, neither nor log
decrease linearly with the increase of ix or therefore, it is not possible

to decide the exact nature of the salt effect. It is worth mentioning here that
since the reaction has to be carried out in sulphuric acid medium (0*025M),
Bronsted relationship for salt effect is naturally not applicable.

*

Thus the reaction between potassium peroxydisulphate and toluene is first
order w.r.t. zero order w.r.t. toluene and negative salt effect for the Ag^-
catalysed reaction suggests that the rate determining step may be between two
oppositely charged ions.

Further work to study the kinetics of different stages and to isolate and
identify different intermediate products is in progress after that only, a detailed
reaction mechanism can be put forward.
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